Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(1): 1-12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952849

RESUMO

Type-3 innate lymphoid cells (ILC3) respond to localized environmental cues to regulate homeostasis and orchestrate immunity in the intestine. The intestinal epithelium is an important upstream regulator and downstream target of ILC3 signaling, however, the complexity of mucosal tissues can hinder efforts to define specific interactions between these two compartments. Here, we employ a reductionist co-culture system of murine epithelial small intestinal organoids (SIO) with ILC3 to uncover bi-directional signaling mechanisms that underlie intestinal homeostasis. We report that ILC3 induce global transcriptional changes in intestinal epithelial cells, driving the enrichment of secretory goblet cell signatures. We find that SIO enriched for goblet cells promote NKp46+ ILC3 and interleukin (IL)-22 expression, which can feedback to induce IL-22-mediated epithelial transcriptional signatures. However, we show that epithelial regulation of ILC3 in this system is contact-dependent and demonstrate a role for epithelial Delta-Like-Canonical-Notch-Ligand (Dll) in driving IL-22 production by ILC3, via subset-specific Notch1-mediated activation of T-bet+ ILC3. Finally, by interfering with Notch ligand-receptor dynamics, ILC3 appear to upregulate epithelial Atoh1 to skew secretory lineage determination in SIO-ILC3 co-cultures. This research outlines two complimentary bi-directional signaling modules between the intestinal epithelium and ILC3, which may be relevant in intestinal homeostasis and disease.


Assuntos
Interleucina 22 , Linfócitos , Camundongos , Animais , Imunidade Inata , Ligantes , Mucosa Intestinal , Receptores Notch/metabolismo
2.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072206

RESUMO

Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.


Assuntos
Imunidade Adaptativa , Tecido Linfoide , Comunicação Celular , Homeostase , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA