Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147543

RESUMO

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas , Inflamação/tratamento farmacológico , Isoformas de Proteínas , Anti-Inflamatórios/farmacologia , Imunidade Inata , Fatores de Transcrição
2.
SLAS Discov ; 27(5): 306-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513262

RESUMO

The dysregulation of the PRC1/2 complex plays a key role in lineage plasticity in prostate cancer and may be required to maintain neuroendocrine phenotype. [1] CBX2, a key component of the canonical PRC1 complex, is an epigenetic reader, recognizing trimethylated lysine on histone 3 (H3K27me3) [2] and is overexpressed in metastatic neuroendocrine prostate cancer. [3,4] We implemented a screening strategy using nucleosome substrates to identify inhibitors of CBX2 binding to chromatin. Construct design and phosphorylation state of CBX2 were critical for successful implementation and execution of an HTS library screen. A rigorous screening funnel including counter and selectivity assays allowed us to quickly focus on true positive hit matter. Two distinct non-peptide-like chemotypes were identified and confirmed in orthogonal biochemical and biophysical assays demonstrating disruption of CBX2 binding to nucleosomes and direct binding to purified CBX2, respectively.


Assuntos
Complexo Repressor Polycomb 1 , Neoplasias da Próstata , Núcleo Celular/metabolismo , Cromatina , Histonas/metabolismo , Humanos , Masculino , Complexo Repressor Polycomb 1/genética , Neoplasias da Próstata/metabolismo
3.
SLAS Discov ; 26(1): 122-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484379

RESUMO

Interleukin-23 (IL-23) is a key cytokine implicated in the pathogenesis of autoimmune disorders, including psoriasis and ulcerative colitis. Although targeted IL-23 antibody therapeutics are used clinically, there are no small-molecule therapeutics that selectively inhibit IL-23 signaling. To address this gap, we developed a high-throughput screening strategy employing an IL-23-responsive cell-based luciferase reporter gene assay as the primary screen, with cellular cytotoxicity and off-target counter screening assays to identify IL-23 pathway-specific inhibitors. The primary screening assay utilized avian DT40 cells, genetically engineered to overexpress IL-23R, IL-12Rß1, STAT5, and firefly luciferase, in a 1536-well format. Treatment of these cells with IL-23 resulted in the phosphorylation and activation of STAT5, which was completely inhibited by the pan-JAK inhibitor tofacitinib. Assay performance was robust, with signal-to-background >7-fold and Z' > 0.5 over 40 screening plates (approximately 24,000 compounds), with a hit rate of 5% (>66.9% activity cutoff). Of these 1288 hits, 66% were identified as cytotoxic by incubating the IL-23 reporter cells with compound overnight and measuring cell viability. Further assessment of specificity via examination of impact on off-target IFN-γ signaling eliminated an additional 230 compounds, leaving 209 that were evaluated for dose-response activity. Of these compounds, 24 exhibited IC50 values of <7 µM and ≥80% inhibition of IL-23 activity, with >3-fold selectivity over IFN-γ inhibition, thus representing promising starting points for prospective IL-23 pathway small-molecule inhibitors.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Subunidade p19 da Interleucina-23/metabolismo , Transdução de Sinais/efeitos dos fármacos , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos
4.
Bioorg Med Chem Lett ; 30(21): 127460, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755680

RESUMO

Structure- and ligand-based virtual-screening methods (docking, 2D- and 3D-similarity searching) were analyzed for their effectiveness in virtual screening against FFAR2. To evaluate the performance of these methods, retrospective virtual screening was performed. Statistical quality of the methods was evaluated by BEDROC and RIE. The results revealed that electrostatic similarity search protocol using EON (ET combo) outperformed all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Interestingly, the hit lists that are obtained from different virtual-screening methods are generally highly complementary to hits found from electrostatic similarity searching. These results suggest that considering electrostatic similarity searching first increases the chance of identifying more (and more diverse) active compounds from a virtual-screening campaign. Accordingly, prospective virtual screening using electrostatic similarity searching was used to identify novel FFAR2 ligands. The discovered compounds provide new chemical matter starting points for the initiation of a medicinal chemistry campaign.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Receptores de Superfície Celular/agonistas , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 28(23-24): 3780-3783, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30337231

RESUMO

A novel series of pyrazolyltetrahydropyran N-type calcium channel blockers are described. Structural modifications of the series led to potent compounds in both a cell-based fluorescent calcium influx assay and a patch clamp electrophysiology assay. Representative compounds from the series were bioavailable and showed efficacy in the rat CFA and CCI models of inflammatory and neuropathic pain.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Neuralgia/tratamento farmacológico , Pirazóis/química , Pirazóis/uso terapêutico , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Descoberta de Drogas , Células HEK293 , Humanos , Masculino , Neuralgia/metabolismo , Técnicas de Patch-Clamp , Piranos/química , Piranos/farmacologia , Piranos/uso terapêutico , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley
7.
SLAS Discov ; 22(8): 1060-1066, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28426939

RESUMO

Agonist shift assays feature cross-titrations of allosteric modulators and orthosteric ligands. Information generated in agonist shift assays can include a modulator's effect on the orthosteric agonist's potency (alpha) and efficacy (beta), as well as direct agonist activity of the allosteric ligand (tauB) and the intrinsic binding affinity of the modulator to the unoccupied receptor (KB). Because of the heavy resource demand and complex data handling, these allosteric parameters are determined infrequently during the course of a drug discovery program and on a relatively small subset of compounds. Automation of agonist shift assays enables this data-rich analysis to evaluate a larger number of compounds, offering the potential to differentiate compound classes earlier and prospectively prioritize based on desired molecular pharmacology. A high-throughput calcium-imaging agonist shift assay was pursued to determine the allosteric parameters of over 1000 positive allosteric modulator (PAM) molecules for the human muscarinic acetylcholine receptor 1 (M1). Control compounds were run repeatedly to demonstrate internal consistency. Comparisons between potency measurements and the allosteric parameter results demonstrate that these different types of measurements do not necessarily correlate, highlighting the importance of fully characterizing and understanding the allosteric properties of leads.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Receptor Muscarínico M1/metabolismo , Acetilcolina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Automação , Células CHO , Cricetinae , Cricetulus , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/química , Reprodutibilidade dos Testes
8.
SLAS Discov ; 22(8): 995-1006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28426940

RESUMO

High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Heurística , Interface Usuário-Computador , Aprendizado de Máquina
10.
ACS Chem Biol ; 12(2): 519-527, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28032990

RESUMO

N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.


Assuntos
Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Animais , Teorema de Bayes , Células CHO , Cricetinae , Cricetulus , Humanos , Aprendizado de Máquina
11.
SLAS Technol ; 22(2): 195-205, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27864339

RESUMO

In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca2+ detection, on nearly 100 compounds for each target.


Assuntos
Automação Laboratorial/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Titulometria/métodos , Automação Laboratorial/instrumentação , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala , Humanos , Receptores Acoplados a Proteínas G/agonistas , Titulometria/instrumentação
12.
Bioorg Med Chem Lett ; 26(23): 5724-5728, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815121

RESUMO

The transformation of an aryloxybutanoic acid ultra high-throughput screening (uHTS) hit into a potent and selective series of G-protein coupled receptor 120 (GPR120) agonists is reported. uHTS hit 1 demonstrated an excellent rodent pharmacokinetic profile and selectivity over the related fatty acid receptor GPR40, but only modest GPR120 potency. Optimization of the "left-hand" aryl group led to compound 6, which demonstrated a GPR120 mechanism-based pharmacodynamic effect in a mouse oral glucose tolerance test (oGTT). Further optimization gave rise to the benzofuran propanoic acid series (exemplified by compound 37), which demonstrated acute mechanism-based pharmacodynamic effects. The combination of in vivo efficacy and attractive rodent pharmacodynamic profiles suggests compounds generated from this series may afford attractive candidates for the treatment of Type 2 diabetes.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Propionatos/química , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Benzofuranos/sangue , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Hipoglicemiantes/sangue , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Propionatos/sangue , Receptores Acoplados a Proteínas G/metabolismo
13.
J Biomol Screen ; 21(5): 480-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26861708

RESUMO

The NaV1.7 voltage-gated sodium channel is a highly valued target for the treatment of neuropathic pain due to its expression in pain-sensing neurons and human genetic mutations in the gene encoding NaV1.7, resulting in either loss-of-function (e.g., congenital analgesia) or gain-of-function (e.g., paroxysmal extreme pain disorder) pain phenotypes. We exploited existing technologies in a novel manner to identify selective antagonists of NaV1.7. A full-deck high-throughput screen was developed for both NaV1.7 and cardiac NaV1.5 channels using a cell-based membrane potential dye FLIPR assay. In assay development, known local anesthetic site inhibitors produced a decrease in maximal response; however, a subset of compounds exhibited a concentration-dependent delay in the onset of the response with little change in the peak of the response at any concentration. Therefore, two methods of analysis were employed for the screen: one to measure peak response and another to measure area under the curve, which would capture the delay-to-onset phenotype. Although a number of compounds were identified by a selective reduction in peak response in NaV1.7 relative to 1.5, the AUC measurement and a subsequent refinement of this measurement were able to differentiate compounds with NaV1.7 pharmacological selectivity over NaV1.5 as confirmed in electrophysiology.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuralgia/tratamento farmacológico , Humanos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Terapia de Alvo Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Dor/tratamento farmacológico , Reto/anormalidades
14.
J Med Chem ; 58(9): 3859-74, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25850459

RESUMO

Reported herein is the design, synthesis, and pharmacologic characterization of a class of TRPV1 antagonists constructed on a benzo[d]imidazole platform that evolved from a biaryl amide lead. This design composes three sections: a 2-substituted 5-phenyl headgroup attached to the benzo[d]imidazole platform, which is tethered at the two position to a phenyl tail group. Optimization of this design led to the identification of 4 (mavatrep), comprising a trifluoromethyl-phenyl-vinyl tail. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, 4 antagonized capsaicin-induced Ca(2+) influx, with an IC50 value of 4.6 nM. In the complete Freund's adjuvant- and carrageenan-induced thermal hypersensitivity models, 4 exhibited full efficacy, with ED80 values of 7.8 and 0.5 mg/kg, respectively, corresponding to plasma levels of 270.8 and 9.2 ng/mL, respectively. On the basis of its superior pharmacologic and safety profile, 4 (mavatrep) was selected for clinical development for the treatment of pain.


Assuntos
Analgésicos/química , Benzimidazóis/química , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Disponibilidade Biológica , Carragenina , Cães , Adjuvante de Freund , Células HEK293 , Haplorrinos , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
15.
J Biomol Screen ; 20(6): 708-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25700884

RESUMO

GluK1, a kainate subtype of ionotropic glutamate receptors, exhibits an expression pattern in the CNS consistent with involvement in pain processing and migraine. Antagonists of GluK1 have been shown to reduce pain signaling in the spinal cord and trigeminal nerve, and are predicted to provide pain and migraine relief. We developed an ultra-high-throughput small-molecule screen to identify antagonists of GluK1. Using the calcium indicator dye fluo-4, a multimillion-member small-molecule library was screened in 1536-well plate format on the FLIPR (Fluorescent Imaging Plate Reader) Tetra against cells expressing a calcium-permeable GluK1. Following confirmation in the primary assay and subsequent counter-screen against the endogenous Par-1 receptor, 6100 compounds were selected for dose titration to assess potency and selectivity. Final triage of 1000 compounds demonstrating dose-dependent inhibition with IC50 values of less than 12 µM was performed in an automated whole-cell patch clamp electrophysiology assay. Although a weak correlation between electrophysiologically active and calcium-imaging active compounds was observed, the identification of electrophysiologically active compounds with a range of kinetic profiles revealed a broad spectrum of mechanisms of action.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/metabolismo , Automação Laboratorial , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
18.
J Med Chem ; 56(22): 9019-30, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24205976

RESUMO

Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures. Mechanistically, 4 inhibited voltage-gated Na(+) channels and N-type Ca(2+) channels and was effective as a K(+) channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies.


Assuntos
Amidas/química , Amidas/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Dioxanos/química , Dioxanos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Absorção , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Dioxanos/farmacocinética , Dioxanos/uso terapêutico , Cães , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Epilepsia/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Ratos , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
19.
Bioorg Med Chem Lett ; 22(12): 4080-3, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22608964

RESUMO

Selective blockers of the N-type calcium channel have proven to be effective in animal models of chronic pain. However, even though intrathecally delivered synthetic ω-conotoxin MVIIA from Conus magnus (ziconotide [Prialt®]) has been approved for the treatment of chronic pain in humans, its mode of delivery and narrow therapeutic window have limited its usefulness. Therefore, the identification of orally active, small-molecule N-type calcium channel blockers would represent a significant advancement in the treatment of chronic pain. A novel series of pyrazole-based N-type calcium channel blockers was identified by structural modification of a high-throughput screening hit and further optimized to improve potency and metabolic stability. In vivo efficacy in rat models of inflammatory and neuropathic pain was demonstrated by a representative compound from this series.


Assuntos
Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo N/metabolismo , Dor Crônica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Piperidinas/síntese química , Pirazóis/síntese química , Analgésicos/uso terapêutico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Linhagem Celular , Dor Crônica/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Neuralgia/metabolismo , Técnicas de Patch-Clamp , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , Ratos , Relação Estrutura-Atividade , ômega-Conotoxinas/uso terapêutico
20.
Assay Drug Dev Technol ; 8(6): 685-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21050074

RESUMO

Abstract The N-type voltage-gated calcium channel (Cav2.2) has been intensively explored as a target for novel, small-molecule analgesic drugs because of its distribution in the pain pathway and its role in nociceptive processing. For example, Cav2.2 is localized at presynaptic terminals of pain fibers in the dorsal horn, and it serves as a downstream effector of µ-opioid receptors. Most importantly, antagonism of the channel by the highly specific and potent Cav2.2 blocker ω-conotoxin MVIIA (ziconotide) produces clinical efficacy in the treatment of severe, intractable pain. To identify novel small-molecule Cav2.2 inhibitors, we developed new tools and screening methods critical to enhance the efficiency and probability of success. First, we established and characterized a new cell line stably expressing the three subunits of the Cav2.2, including an α-subunit splice variant that is uniquely expressed by dorsal root ganglion neurons. Second, using this cell line, we validated and employed a fluorescence-based calcium flux assay. Third, we developed a new "medium-throughput" electrophysiology assay using QPatch-HT to provide faster turnaround on high-content electrophysiology data that are critical for studying ion channel targets. Lastly, we used a therapeutically relevant, ex vivo spinal cord calcitonin gene-related peptide-release assay to confirm activities in the other assays. Using this approach we have identified compounds exhibiting single-digit nM IC50 values and with a positive correlation across assay methods. This integrated approach provides a more comprehensive evaluation of small-molecule N-type inhibitors that may lead to improved therapeutic pharmacology.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Analgésicos/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Medições Luminescentes , Neurônios/metabolismo , Dor/fisiopatologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Ratos , Medula Espinal/metabolismo , ômega-Conotoxinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA