Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 402: 110281, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37356408

RESUMO

Anaerobic spore-forming bacteria are a continuous threat to the dairy industry due to their ability to withstand processing conditions, such as those during heat treatment. These ubiquitous microorganisms have ample opportunity for multiple entry points into the milk chain, creating food quality and safety issues. Certain spore-formers, namely bacilli and clostridia, are more problematic due to their ability to spoil dairy products and pathogenicity. In this study, we investigated how milk treatment and milk powder production influenced the composition and survival of anaerobic spore-formers. Samples were obtained on three different days (replicate blocks) during the production of dairy powders and examined in a culture-dependent manner using the most probable number method coupled with 16S rRNA amplicon sequencing and metagenomic analysis of the enriched samples. Results revealed that the milk separation greatly affected the spore-former presence and composition which were detected along the entire production line from raw material to milk powders. Throughout the various points of the production line, the occurrence of species belonging to the Bacillus cereus sensu lato was higher than that of clostridia. Sequence variants (SVs) belonging to the anaerobic spore-forming genus Clostridium were taxonomically assigned to two SVs groups and were detected in all three replicate blocks. A total of 19 metagenome-assembled genomes were recovered from nine enrichments. Four near-complete and two medium-quality genomes were found in raw milk/milk powder samples and further assigned as Clostridium tyrobutyricum and Clostridium diolis, which may constitute a problem in the finished dairy product. In conclusion, our findings highlight spore-formers' importance on dairy quality and may aid in their intervention and control in the dairy production line.


Assuntos
Temperatura Alta , Leite , Animais , Leite/microbiologia , Pós , Esporos Bacterianos/genética , RNA Ribossômico 16S/genética , Anaerobiose
2.
Front Microbiol ; 11: 1273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625184

RESUMO

The presence of extended-spectrum ß-lactamase (ESBL)-producing bacteria in environmental sources has been reported worldwide and constitutes a serious risk of community-acquired infections with limited treatment options. The current study aimed to explore the presence of these worrisome bacteria in a pond located at the Norwegian University of Life Sciences in Ås, Norway. A total of 98 bacterial isolates survived growth on selective chromogenic media and were identified by 16S rRNA Sanger sequencing. All strains were evaluated for the presence of the most commonly found ß-lactamases and ESBLs in clinical settings (bla CTX-M groups 1, 2, and 9, bla CMY, bla SHV, and bla TEM) and carbapenemases (bla IMP, bla KPC, bla NDM, bla OXA, bla SFC1, bla VIM) through multiplex PCR. A total of eight strains were determined to contain one or more genes of interest. Phenotypic resistance to 18 antimicrobial agents was assessed and isolates were subjected to whole genome sequencing through a combination of Oxford Nanopore's MinION and Illumina's MiSeq. Results revealed the presence of ß-lactamase and ESBL-producing Escherichia coli, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and a Paraburkholderia spp. Identified ß-lactamases and ESBLs include bla CTX-M, bla TEM, bla CMY, bla SHV and a possible bla KPC-like gene, with both documented and novel sequences established. In addition, two inducible ß-lactamases were found, a class A ß-lactamase (L1) and a cephalosporinase (L2). All strains were determined to be multidrug resistant and numerous resistance genes to non-ß-lactams were observed. In conclusion, this study demonstrates that environmental sources are a potential reservoir of clinically relevant ESBL-producing bacteria that may pose a health risk to humans upon exposure.

3.
BMC Infect Dis ; 18(1): 544, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497396

RESUMO

BACKGROUND: Classification of pathogenic Escherichia coli (E. coli) has traditionally relied on detecting specific virulence associated genes (VAGs) or combinations thereof. For E. coli isolated from faecal samples, the presence of specific genes associated with different intestinal pathogenic pathovars will determine their classification and further course of action. However, the E. coli genome is not a static entity, and hybrid strains are emerging that cross the pathovar definitions. Hybrid strains may show gene contents previously associated with several distinct pathovars making the correct diagnostic classification difficult. We extended the analysis of routinely submitted faecal isolates to include known virulence associated genes that are usually not examined in faecal isolates to detect the frequency of possible hybrid strains. METHODS: From September 2012 to February 2013, 168 faecal isolates of E. coli routinely submitted to the Norwegian Institute of Public Health (NIPH) from clinical microbiological laboratories throughout Norway were analysed for 33 VAGs using multiplex-PCR, including factors associated with extraintestinal pathogenic E. coli (ExPEC) strains. The strains were further typed by Multiple Locus Variable-Number Tandem-Repeat Analysis (MLVA), and the phylogenetic grouping was determined. One isolate from the study was selected for whole genome sequencing (WGS) with a combination of Oxford Nanopore's MinION and Illumina's MiSeq. RESULTS: The analysis showed a surprisingly high number of strains carrying ExPEC associated VAGs and strains carrying a combination of both intestinal pathogenic E. coli (IPEC) and ExPEC VAGs. In particular, 93.5% (101/108) of isolates classified as belonging to an IPEC pathovar additionally carried ExPEC VAGs. WGS analysis of a selected hybrid strain revealed that it could, with present classification criteria, be classified as belonging to all of the Enteropathogenic Escherichia coli (EPEC), Uropathogenic Escherichia coli (UPEC), Neonatal meningitis Escherichia coli (NMEC) and Avian pathogenic Escherichia coli (APEC) pathovars. CONCLUSION: Hybrid ExPEC/IPEC E. coli strains were found at a very high frequency in faecal samples and were in fact the predominant species present. A sequenced hybrid isolate was confirmed to be a cross-pathovar strain possessing recognised hallmarks of several pathovars, and a genome heavily influenced by horizontal gene transfer.


Assuntos
Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Fezes/microbiologia , Fatores de Virulência/análise , Animais , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/genética , Fezes/química , Humanos , Incidência , Intestinos/microbiologia , Meningite devida a Escherichia coli/epidemiologia , Meningite devida a Escherichia coli/microbiologia , Noruega/epidemiologia , Filogenia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/isolamento & purificação , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA