Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4238, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144407

RESUMO

An image analyzing method (SVD-clustering) is presented. Amplitude vectors of SVD factorization (V1…Vi) were introduced into the imaging of the distribution of the corresponding Ui basis-spectra. Since each Vi vector contains each point of the map, plotting them along the X, Y, Z dimensions of the map reconstructs the spatial distribution of the corresponding Ui basis-spectrum. This gives valuable information about the first, second, etc. higher-order deviations present in the map. We extended SVD with a clustering method, using the significant Vi vectors from the VT matrix as coordinates of image points in a ne-dimensional space (ne is the effective rank of the data matrix). This way every image point had a corresponding coordinate in the ne-dimensional space and formed a point set. Clustering was applied to this point set. SVD-clustering is universal; it is applicable to any measurement where data are recorded as a function of an external parameter (time, space, temperature, concentration, species, etc.). Consequently, our method is not restricted to spectral imaging, it can find application in many different 2D and 3D image analyses. Using SVD-clustering, we have shown on models the theoretical possibilities and limitations of the method, especially in the context of creating, meaning/interpreting of cluster spectra. Then for real-world samples, two examples are presented, where we were able to reveal minute alterations in the samples (changing cation ratios in minerals, differently structured cellulose domains in plant root) with spatial resolution.

2.
J Mol Neurosci ; 59(2): 300-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27154515

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread distribution. PACAP plays an important role in the development of the nervous system, it has a trophic and protective effect, and it is also implicated in the regulation of various physiological functions. Teeth are originated from the mesenchyme of the neural crest and the ectoderm of the first branchial arch, suggesting similarities with the development of the nervous system. Earlier PACAP-immunoreactive fibers have been found in the odontoblastic and subodontoblastic layers of the dental pulp. Our previous examinations have shown that PACAP deficiency causes alterations in the morphology and structure of the developing molars of 7-day-old mice. In our present study, morphometric and structural comparison was performed on the incisors of 1-year-old wild-type and PACAP-deficient mice. Hard tissue density measurements and morphometric comparison were carried out on the mandibles and the lower incisors with micro-CT. For structural examination, Raman microscopy was applied on frontal thin sections of the mandible. With micro-CT morphometrical measurements, the size of the incisors and the relative volume of the pulp to dentin were significantly smaller in the PACAP-deficient group compared to the wild-type animals. The density of calcium hydroxyapatite in the dentin was reduced in the PACAP-deficient mice. No structural differences could be observed in the enamel with Raman microscopy. Significant differences were found in the dentin of PACAP-deficient mice with Raman microscopy, where increased carbonate/phosphate ratio indicates higher intracrystalline disordering. The evaluation of amide III bands in the dentin revealed higher structural diversity in wild-type mice. Based upon our present and previous results, it is obvious that PACAP plays an important role in tooth development with the regulation of morphogenesis, dentin, and enamel mineralization. Further studies are required to clarify the molecular background of the effects of PACAP on tooth development.


Assuntos
Incisivo/ultraestrutura , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Carbonatos/análise , Esmalte Dentário/ultraestrutura , Dentina/ultraestrutura , Durapatita/análise , Incisivo/química , Incisivo/crescimento & desenvolvimento , Masculino , Camundongos , Fosfatos/análise , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência
3.
J Mol Neurosci ; 54(3): 331-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112419

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.


Assuntos
Dente Molar/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Ameloblastos/metabolismo , Animais , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Dentina/crescimento & desenvolvimento , Dentina/metabolismo , Durapatita/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Receptores Patched , Receptor Patched-1 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA