RESUMO
BACKGROUND: In patients with acute intermittent porphyria (AIP), induction of delta aminolevulinic acid synthase 1 (ALAS1) leads to haem precursor accumulation that may cause recurring acute attacks. In a recent phase III trial, givosiran significantly reduced the attack rate in severe AIP patients. Frequent adverse events were injection-site reaction, fatigue, nausea, chronic kidney disease and increased alanine aminotransferase. OBJECTIVES: To describe the efficacy and safety of givosiran based on a personalized medical approach. METHODS: We conducted a retrospective patient file study in 25 severe AIP patients treated with givosiran in France. We collected data on clinical and biochemical efficacy along with reports of adverse events. RESULTS: Givosiran drastically reduced the attack rate in our cohort, as 96% were attack-free at the time of the study. The sustained efficacy of givosiran in most patients allowed us to personalize dosing frequency. In 42%, givosiran was only given when haem precursor levels were increasing. Our data suggest that givosiran is most effective when given early in the disease course. We confirmed a high prevalence of adverse events. One patient discontinued treatment due to acute pancreatitis. All patients had hyperhomocysteinemia, and all patients with initial homocysteine levels available showed an increase under treatment. In this context, one patient was diagnosed with pulmonary embolism. CONCLUSION: The sustained effect of givosiran allowed a decrease in dosing frequency without compromising treatment efficacy. The high prevalence of adverse events emphasizes the importance of restricting the treatment to severe AIP and administering the minimum effective dose for each patient.
Assuntos
Pancreatite , Porfiria Aguda Intermitente , Acetilgalactosamina/análogos & derivados , Doença Aguda , Heme , Humanos , Pancreatite/tratamento farmacológico , Porfiria Aguda Intermitente/tratamento farmacológico , Medicina de Precisão , Pirrolidinas , Estudos RetrospectivosRESUMO
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Assuntos
Porfiria Aguda Intermitente/terapia , Alelos , Animais , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Predisposição Genética para Doença , Heme/metabolismo , Humanos , Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/genética , Redes e Vias Metabólicas , Mutação , Porfiria Aguda Intermitente/diagnóstico , Porfiria Aguda Intermitente/etiologia , Relação Estrutura-Atividade , Resultado do TratamentoRESUMO
BACKGROUND: Erythropoietic protoporphyria (EPP) is a rare inherited disease associated with heme metabolism, characterized by severe life-long photosensitivity and liver involvement. OBJECTIVE: To provide epidemiological data of EPP in Italy. MATERIALS & METHODS: Prospective/retrospective data of EPP patients were collected by an Italian network of porphyria specialist centres (Gruppo Italiano Porfiria, GrIP) over a 20-year period (1996-2017). RESULTS: In total, 179 patients (79 females) with a clinical and biochemical diagnosis of EPP were assessed, revealing a prevalence of 3.15 cases per million persons and an incidence of 0.13 cases per million persons/year. Incidence significantly increased after 2009 (due to the availability of alfa-melanotide, which effectively limits skin photosensitivity). Mean age at diagnosis was 28 years, with only 22 patients (12.2%) diagnosed ≤10 years old. Gene mutations were assessed in 173 (96.6%) patients; most (164; 91.3%) were FECH mutations on one allele in association with the hypomorphic variant, c.315-48C, on the other (classic EPP), and nine (5.2%) were ALAS2 mutations (X-linked EPP). Only one case of autosomal recessive EPP was observed. Of the 42 different FECH mutations, 15 are novel, three mutations collectively accounted for 45.9% (75/164) of the mutations (c.215dupT [27.2%], c.901_902delTG [11.5%] and c.67 + 5G > A [7.2%]), and frameshift mutations were prevalent (33.3%). A form of light protection was used by 109/179 (60.8%) patients, and 100 (56%) had at least one α-melanotide implant. Three cases of severe acute liver involvement, requiring OLT, were observed. CONCLUSION: These data define, for the first time, the clinical and molecular epidemiology of EPP in Italy.
Assuntos
Protoporfiria Eritropoética/epidemiologia , Protoporfiria Eritropoética/genética , 5-Aminolevulinato Sintetase/genética , Adulto , Estudos Transversais , Feminino , Ferroquelatase/genética , Genes Recessivos , Genes Ligados ao Cromossomo X , Humanos , Incidência , Itália , Masculino , Epidemiologia Molecular , Mutação , Prevalência , Estudos Prospectivos , Estudos RetrospectivosRESUMO
The PPOX gene encodes for the protoporphyrinogen oxidase, which is involved in heme production. The partial deficiency of protoporphyrinogen oxidase causes variegate porphyria. The tissue-specific regulation of other heme biosynthetic enzymes is extensively studied, but the information concerning transcriptional and post-transcriptional regulation of PPOX gene expression is scarcely available. In this study, we characterized functions of three variants identified in the regulatory regions of the PPOX gene, which show a novel role for the 5' untranslated exon 1. Using luciferase assays and RNA analysis, we demonstrated that only c.1-883G>C promoter variant causes a significant loss in the transcriptional activity of PPOX gene whereas c.1-413G>T 5' UTR variant inhibits translation of PPOX mRNA and c.1-176G>A splicing variant causes 4bp deletion in 5' UTR of PPOX mRNA variant 2. These observations indicate that the regulation of PPOX gene expression can also occur through a post-transcriptional modulation of the amount of gene product and that this modulation can be mediated by 5' untranslated exon 1. Moreover this study confirms that these regulatory regions represent an important molecular target for the pathogenesis of variegate porphyria.
Assuntos
Epigênese Genética , Flavoproteínas/genética , Proteínas Mitocondriais/genética , Mutação , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regiões 5' não Traduzidas/genética , Coleta de Amostras Sanguíneas , Linhagem Celular Tumoral , Éxons , Regulação da Expressão Gênica , Humanos , Porfiria Variegada/etiologiaRESUMO
We report on a 21-year old woman with intellectual disability, autistic features, severe obesity, and facial dysmorphisms suggestive of Wolf-Hirschhorn syndrome (WHS). Array-CGH analysis showed a 2.89 Mb deletion on chromosome 14q11.2 containing 47 known genes. The most interesting genes included in this deletion are CHD8, a chromodomain helicase DNA binding protein that is associated with autism spectrum disorders, and MMP14, a matrix metalloproteinase that has been linked to obesity and type 2 diabetes. This report shows that 14q11.2 microdeletions can mimic WHS and suggests that gene(s) in the deleted interval that may be responsible for a phenocopy of WHS.