Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133627, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301440

RESUMO

Aqueous film forming foam (AFFF)-impacted asphalt and concrete may serve as potential secondary sources of per- and polyfluoroalkyl substances (PFAS) to the environment through surficial leaching. We aimed to understand the vertical distribution and surficial release of PFAS from AFFF-impacted asphalt and concrete cores collected from various locations (∼10-70 m distance between samples). Among the PFAS analyzed, 6:2 FTS was observed as having the highest concentration in the surface layer (0 - 0.5 cm) of concrete (225 µg kg-1) and in the runoff from the concrete (2600 ng L-1). PFOS was detected at the highest concentration in the surface layer (0 - 0.5 cm) of asphalt (47 µg kg-1) and associated runoff (780 ng L-1). The total mass of PFAS released during three rainfall simulations accounts for a fraction of the total mass in the surface layer (0 - 0.5 cm), ranging from 0.10 - 9.8% and 0.078 - 2.4% for asphalt and concrete cores, respectively. Asphalt exhibited a higher release rate than concrete, demonstrated by the higher total release coefficient of PFAS (4 - 16 m-2) compared to that of concrete cores (1 - 5 m-2). These results suggested that, similar to concrete, AFFF-impacted asphalt may be a secondary source of PFAS to the environment.

2.
Water Res X ; 20: 100195, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37637861

RESUMO

Per- and polyfluoroalkyl substances (PFAS) within concrete pads impacted by historical firefighting training using aqueous film-forming foam (AFFF) may be potential secondary sources of PFAS due to surficial leaching. This study aimed to (i) characterize the effectiveness of two commercially available sealants (Product A and Product B) in mitigating leaching of five PFAS (e.g., PFOS, PFOA, PFHxS, PFHxA, 6:2 FTS) from concrete surfaces at the laboratory-scale, and (ii) develop a model to forecast cumulative leaching of the same five PFAS over 20 years from sealed and unsealed concrete surfaces. Laboratory trials demonstrated that both sealants reduced the surficial leaching of the five PFAS studied, and Product B demonstrated a comparatively greater reduction in surface leaching than Product A as measured against unsealed controls. The cumulative PFOS leaching from an unsealed concrete surface is estimated by the model to be about 400 mg/m2 over 20 years and reached asymptotic conditions after 15 years. In contrast, the model output suggests asymptotic conditions were not achieved within the modeled time of 20 years after sealing with Product A and 85% of PFOS was predicted to have leached (∼340 mg/m2). Negligible leaching of PFOS after sealing with Product B was observed ( < 5 × 10-9 mg/m2). Results from modeled rainfall scenarios suggest PFAS leachability is reduced from sealed versus unsealed AFFF-impacted concrete surfaces.

3.
Environ Sci Technol ; 47(17): 9950-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23909410

RESUMO

Soluble di-iron monooxygenases (SDIMOs), especially group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), are of significant interest due to their potential role in the initiation of 1,4-dioxane (dioxane) degradation. Functional gene array (i.e., GeoChip) analysis of Arctic groundwater exposed to dioxane since 1980s revealed that various dioxane-degrading SDIMO genes were widespread, and PCR-DGGE analysis showed that group-5 SDIMOs were present in every tested sample, including background groundwater with no known dioxane exposure history. A group-5 thmA-like gene was enriched (2.4-fold over background, p < 0.05) in source-zone samples with higher dioxane concentrations, suggesting selective pressure by dioxane. Microcosm assays with (14)C-labeled dioxane showed that the highest mineralization capacity (6.4 ± 0.1% (14)CO2 recovery during 15 days, representing over 60% of the amount degraded) corresponded to the source area, which was presumably more acclimated and contained a higher abundance of SDIMO genes. Dioxane mineralization ceased after 7 days and was resumed by adding acetate (0.24 mM) as an auxiliary substrate to replenish NADH, a key coenzyme for the functioning of monoxygenases. Acetylene inactivation tests further corroborated the vital role of monooxygenases in dioxane degradation. This is the first report of the prevalence of oxygenase genes that are likely involved in dioxane degradation and suggests their usefulness as biomarkers of dioxane natural attenuation.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Dioxanos/toxicidade , Água Subterrânea/microbiologia , Oxigenases de Função Mista/genética , Poluentes Químicos da Água/toxicidade , Alaska , Regiões Árticas , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Monitoramento Ambiental , Oxigenases de Função Mista/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
4.
Environ Sci Technol ; 45(14): 5952-8, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21650208

RESUMO

At buildings with potential for vapor intrusion of volatile organic chemicals (VOCs) from the subsurface, the ability to accurately distinguish between vapor intrusion and indoor sources of VOCs is needed to support accurate and efficient vapor intrusion investigations. We have developed a method for application of compound-specific stable isotope analysis (CSIA) for this purpose that uses an adsorbent sampler to obtain sufficient sample mass from the air for analysis. Application of this method to five residences near Hill Air Force Base in Utah indicates that subsurface and indoor sources of tricholorethene and tetrachloroethene often exhibit distinct carbon and chlorine isotope ratios. The differences in isotope ratios between indoor and subsurface sources can be used to identify the source of these chemicals when they are present in indoor air.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Gases/química , Habitação , Compostos Orgânicos Voláteis/análise , Isótopos de Carbono/análise , Cloro/análise , Cloro/química , Cromatografia Gasosa-Espectrometria de Massas , Tetracloroetileno/análise , Tricloroetileno/análise , Utah
5.
Water Res ; 44(9): 2894-900, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20199795

RESUMO

1,4-Dioxane biodegradation was investigated in microcosms prepared with groundwater and soil from an impacted site in Alaska. In addition to natural attenuation conditions (i.e., no amendments), the following treatments were tested: (a) biostimulation by addition of 1-butanol (a readily available auxiliary substrate) and inorganic nutrients; and (b) bioaugmentation with Pseudonocardia dioxanivorans CB1190, a well-characterized dioxane-degrading bacterium, or with Pseudonocardia antarctica DVS 5a1, a bacterium isolated from Antarctica. Biostimulation enhanced the degradation of 50 mg L(-1) dioxane by indigenous microorganisms (about 0.01 mg dioxane d(-1) mg protein(-1)) at both 4 and 14 degrees C, with a simultaneous increase in biomass. A more pronounced enhancement was observed through bioaugmentation. Microcosms with 50 mg L(-1) initial dioxane (representing source-zone contamination) and augmented with CB1190 degraded dioxane fastest (0.16 +/- 0.04 mg dioxane d(-1) mg protein(-1)) at 14 degrees C, and the degradation rate decreased dramatically at 4 degrees C (0.021 +/- 0.007 mg dioxane d(-1) mg protein(-1)). In contrast, microcosms with DVS 5a1 degraded dioxane at similar rates at 4 degrees C and 14 degrees C (0.018 +/- 0.004 and 0.015 +/- 0.006 mg dioxane d(-1) mg protein(-1), respectively). DVS 5a1 outperformed CB1190 when the initial dioxane concentration was low (500 microg L(-1), which is representative of the leading edge of plumes). This indicates differences in competitive advantages of these two strains. Natural attenuation microcosms also showed significant degradation over 6 months when the initial dioxane concentration was 500 microg L(-1). This is the first study to report the potential for dioxane bioremediation and natural attenuation of contaminated groundwater in sensitive cold-weather ecosystems such as the Arctic.


Assuntos
Biodegradação Ambiental , Temperatura Baixa , Dioxanos/metabolismo , Poluentes Químicos da Água/metabolismo , Alaska , Água Doce/química , Água Doce/microbiologia , Microbiologia do Solo , Microbiologia da Água , Purificação da Água/métodos
6.
Environ Sci Technol ; 39(18): 7279-86, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16201659

RESUMO

Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Petróleo/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Ar , Benzeno/análise , Benzeno/química , Derivados de Benzeno/análise , Dióxido de Carbono/análise , Hidrocarbonetos/química , Michigan , Oxigênio/química , Oxigênio/metabolismo , Pressão , Fatores de Tempo , Tolueno/análise , Água , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Xilenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA