RESUMO
Arthropod-borne rickettsioses comprise a wide variety of subtypes that are endemic in Cambodia, but there remains very little data on the geographic distribution of the pathogens or their vectors. Surveys were conducted in Koh Kong and Preah Sihanouk Provinces between September 2017 and June 2018 to collect ectoparasites from peridomestic animals and the environment using dragging and flagging methods. Collected ectoparasites were sorted and identified morphologically, then pooled by species, host, and location for molecular detection using Rickettsia genus- and species-specific qPCR and/or multilocus sequence typing (MLST) assays. A total of 14,254 ectoparasites were collected including seven new locality records. Rickettsia species were detected in 35.5% (174/505) of the pools screened representing 3,149 randomly selected ectoparasites from the total collected. Rickettsia asembonensis was detected in 89.6% (147/164) of Rickettsia-positive flea pools and 3.6% (6/164) of the flea pools were positive for both R. asembonensis and Rickettsia felis. Candidatus Rickettsia senegalensis from Ctenocephalides orientis fleas and Rickettsia sp. close to Rickettsia japonica and Rickettsia heilongjiangensis from Haemaphysalis ticks were identified by MLST. This appears to be the first report of these new ectoparasite records and rickettsial species in southern Cambodia, suggesting a potential health risk to military and civilians in this region.
Assuntos
Tipagem de Sequências Multilocus , Rickettsia , Animais , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Camboja/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Infecções por Rickettsia/epidemiologia , Sifonápteros/microbiologia , Carrapatos/microbiologiaRESUMO
Mosquito-borne diseases pose a significant threat in many Southeast Asian countries, particularly through the sylvatic cycle, which has a wildlife reservoir in forests and rural areas. Studying the composition and diversity of vectors and pathogen transmission is especially challenging in forests and rural areas due to their remoteness, limited accessibility, lack of power, and underdeveloped infrastructure. This study is based on the WHO mosquito sampling protocol, modifies technical details to support mosquito collection in difficult-to-access and resource-limited areas. Specifically, we describe the procedure for using rechargeable lithium batteries and solar panels to power the mosquito traps, demonstrate a workflow for processing and storing the mosquitoes in a -20 °C freezer, data management tools including microclimate data, and quality assurance processes to ensure the validity and reliability of the results. A pre- and post-test was utilized to measure participant knowledge levels. Additional research is needed to validate this protocol for monitoring vector-borne diseases in hard-to-reach areas within other countries and settings.
RESUMO
Ticks and tick-borne diseases represent major threats to the public health of the Mongolian population, of which an estimated 26% live a traditional nomadic pastoralist lifestyle that puts them at increased risk for exposure. Ticks were collected by dragging and removal from livestock in Khentii, Selenge, Tuv, and Umnugovi aimags (provinces) during March-May 2020. Using next-generation sequencing (NGS) with confirmatory PCR and DNA sequencing, we sought to characterize the microbial species present in Dermacentor nuttalli (n = 98), Hyalomma asiaticum (n = 38), and Ixodes persulcatus (n = 72) tick pools. Rickettsia spp. were detected in 90.4% of tick pools, with Khentii, Selenge, and Tuv tick pools all having 100% pool positivity. Coxiella spp. were detected at an overall pool positivity rate of 60%, while Francisella spp. were detected in 20% of pools and Borrelia spp. detected in 13% of pools. Additional confirmatory testing for Rickettsia-positive pools demonstrated Rickettsia raoultii (n = 105), Candidatus Rickettsia tarasevichiae (n = 65) and R. slovaca/R. sibirica (n = 2), as well as the first report of Candidatus Rickettsia jingxinensis (n = 1) in Mongolia. For Coxiella spp. reads, most samples were identified as a Coxiella endosymbiont (n = 117), although Coxiella burnetii was detected in eight pools collected in Umnugovi. Borrelia species that were identified include Borrelia burgdorferi sensu lato (n = 3), B. garinii (n = 2), B. miyamotoi (n = 16), and B. afzelii (n = 3). All Francisella spp. reads were identified as Francisella endosymbiont species. Our findings emphasize the utility of NGS to provide baseline data across multiple tick-borne pathogen groups, which in turn can be used to inform health policy, determine regions for expanded surveillance, and guide risk mitigation strategies.
Assuntos
Borrelia , Dermacentor , Francisella , Ixodes , Ixodidae , Animais , Ixodes/microbiologia , Dermacentor/microbiologia , Mongólia , Sequenciamento de Nucleotídeos em Larga Escala , Ixodidae/microbiologia , Borrelia/genética , Francisella/genéticaRESUMO
Phlebotomine sand flies are proven or suspected vectors of several pathogens of importance, including leishmaniasis, bartonellosis and sand fly fevers. Although sand flies have a worldwide distribution, there has been limited research published on sand flies and sand fly-borne pathogens throughout the Greater Mekong Sub-region (GMS). This review followed the PRISMA guidelines to determine the biodiversity and presence of phlebotomine sand flies and their associated pathogens in the GMS, specifically Cambodia, Thailand, the Lao People's Democratic Republic (Laos), Malaysia and Vietnam. A total of 1472 records were identified by searching electronic databases, scanning reference lists of articles and consulting experts in the field. After screening of title and abstracts, 178 records remained and were further screened for original data (n = 34), not having regional data (n = 14), duplication of data (n = 4), records not available (n = 4) and no language translation available (n = 2). A total of 120 studies were then included for full review, with 41 studies on sand fly-related disease in humans, 33 studies on sand fly-related disease in animals and 54 entomological studies focused on sand flies (5 papers contained data on > 1 category), with a majority of the overall data from Thailand. There were relatively few studies on each country, with the exception of Thailand, and the studies applied different methods to investigate sand flies and sand fly-borne diseases, impacting the ability to conduct meaningful meta-analysis. The findings suggest that leishmaniasis in humans and the presence of sand fly vectors have been reported across several GMS countries over the past 100 years, with local transmission in humans confirmed in Thailand and Vietnam. Additionally, local Mundinia species are likely transmitted by biting midges. Findings from this study provide a framework for future investigations to determine the geographic distribution and risk profiles of leishmaniasis and other associated sand fly-borne disease throughout the GMS. It is recommended that researchers expand surveillance efforts across the GMS, with an emphasis placed on entomological surveys, syndromic and asymptomatic monitoring in both humans and animals and molecular characterization of sand flies and sand fly-borne pathogens, particularly in the understudied countries of Cambodia, Vietnam and Laos.
Assuntos
Leishmania , Leishmaniose , Phlebotomus , Psychodidae , Animais , Humanos , Insetos Vetores , Leishmaniose/epidemiologiaRESUMO
Haemaphysalis Koch, 1844, is the largest genus of ticks in Southeast Asia, but little information is available concerning the species present in Laos. Recent research has yielded records for 10 Haemaphysalis species in Laos, including 5 new records, as well as 3 morphological entities of uncertain status. Further morphological and molecular studies are needed to clarify our taxonomic understanding of this genus in Southeast Asia.
Assuntos
Ixodidae , Carrapatos , Animais , Laos , Sudeste AsiáticoRESUMO
Tick-borne diseases are a major public health concern in Mongolia. Nomadic pastoralists, which make up ~ 26% of Mongolia's population, are at an increased risk of both tick bite exposure and economic loss associated with clinical disease in herds. This study sought to further characterize tick-borne pathogens present in Dermacentor ticks (n = 1,773) sampled in 2019 from 15 of Mongolia's 21 aimags (provinces). The ticks were morphologically identified and sorted into 377 pools which were then screened using Next-Generation Sequencing paired with confirmatory PCR and DNA sequence analysis. Rickettsia spp. were detected in 88.33% of pools, while Anaplasma spp. and Bartonella spp. were detected in 3.18 and 0.79% of pools, respectively. Khentii had the highest infection rate for Rickettsia spp. (76.61%; CI: 34.65-94.79%), while Arkhangai had the highest infection rate for Anaplasma spp. (7.79%; CI:4.04-13.72%). The exclusive detection of Anaplasma spp. in tick pools collected from livestock supports previous work in this area that suggests livestock play a significant role in disease maintenance. The detection of Anaplasma, Bartonella, and Rickettsia demonstrates a heightened risk for infection throughout Mongolia, with this study, to our knowledge, documenting the first detection of Bartonella melophagi in ticks collected in Mongolia. Further research deploying NGS methods is needed to characterize tick-borne pathogens in other endemic tick species found in Mongolia, including Hyalomma asiaticum and Ixodes persulcatus.
RESUMO
This study presents the diversity of mosquitoes collected from communes, endemic with malaria and dengue, located in Khanh Hoa and Binh Phuoc Provinces, Vietnam. A total of 10,288 mosquitoes were collected in the village and forested sites using standard larval dippers, cow-baited traps, ultra-violet light traps, and mechanical aspirators. Mosquito taxa were identified morphologically and species complexes/groups were further characterized molecularly. Five genera of mosquitoes were morphologically identified: Anopheles Meigen (21 species), Aedes Meigen (2 species), Culex Linnaeus (5 species), Mansonia Blanchard sp., and Armigeres Theobald sp. The PCR-based identification methods allowed the distinction of members of Maculatus Group, Funestus Group, and Dirus Complex; and DNA barcodes enabled the further identification of the Barbirostris Complex. Data reported here include the first report of An. saeungae Taai & Harbach and An. wejchoochotei Taai & Harbach from Vietnam, and re-emphasizes the significance of using molecular data in an integrated systematic approach to identify cryptic species and better understand their role in disease transmission.
Assuntos
Distribuição Animal , Culicidae/fisiologia , Animais , Culicidae/classificação , Culicidae/crescimento & desenvolvimento , Larva/classificação , Larva/crescimento & desenvolvimento , Larva/fisiologia , VietnãRESUMO
Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.
Assuntos
Carboidratos , Culicidae , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Animais , Inseticidas/administração & dosagemRESUMO
BACKGROUND: Dual attractant toxic sugar baits (D-ATSB) containing two host kairomones, L-lactic (LA) and 1-octen-3-ol (O), and fruit-based attractants were evaluated through olfactory, consumption and mortality, and semi-field experiments to determine if host kairomones could first, enhance attraction of a fruit-based (attractant) toxic sugar bait (ATSB), and second, increase the efficacy of a fruit based attractive toxic sugar bait (ATSB). METHODS: Four combinations of LA and O were incorporated into the ATSB and evaluated in an olfactometer to determine if these combinations could enhance attraction of Aedes aegypti (L.) to the bait. Ae. albopictus (Skuse) and Ae. aegypti were used to determine bait consumption through excrement droplet counts and percent mortality, of the most attractive D-ATSB (1% LA and 1% O) from the olfactory study. Semi-field evaluations were conducted in screened portable field cages to determine if the D-ATSB applied to non-flowering plants controlled more mosquitoes than the fruit-based ATSB, and ASB. Mosquitoes were exposed to D-ATSB and the two controls for 48 h and collected with BGS traps. The catch rates of the BGS traps were compared to determine efficacy of the D-ATSB. RESULTS: During olfactometer evaluations of D-ATSB, Ae. aegypti mosquitoes were more attracted to 1% LA and 1% O compared to the fruit-based toxic sugar bait alone. Both species of mosquito consumed more fruit-based non-toxic bait (ASB) and ATSB than the D-ATSB. For both species, percent mortality bioassays indicated D-ATSB controlled mosquitoes, as compared to non-toxic control, but not more than the fruit based ATSB. Semi-field evaluations, BioGents sentinel traps at 48 h confirmed that ATSB (positive control) controlled Ae. albopictus, but there was no statistical difference between ASB (negative control) and the D-ATSB. No differences were observed between the mosquitoes caught in any of the experimental formulations for Ae. aegypti. CONCLUSIONS: L-lactic (1%) and 1-octen-3-ol (1%) added to a fruit-based sugar bait increased attraction of Ae. aegypti and may have future implications in mosquito trapping devices. The addition of the host kairomones did not enhance the consumption and efficacy of the ATSB in laboratory or semi-field evaluations for both mosquito species. We attribute to the absence of other host cues leading to lack of alighting onto bait surfaces to imbibe the toxic bait, as well as a possible decrease in palatability of the bait caused by the addition of the host kairomones.