Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Mammal ; 104(5): 1036-1046, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38033358

RESUMO

Sex allocation theories predict that under different ecological conditions the production of sons and daughters will affect parental fitness differently. Skewed offspring sex ratios often occur under captive conditions where individuals are exposed to nutritional and social conditions that differ from nature. Here, we analyzed 29 years of offspring sex ratio data from a captive population of an endangered marsupial, the Numbat (Myrmecobius fasciatus). We partitioned variation in offspring sex ratio based on parental origin (captive- vs. wild-bred), parental weight, maternal age, and maternal reproductive history. Our analyses revealed no effect of parental weight or maternal origin on offspring sex ratio-however, there was a significant effect of paternal origin. Data visualization indicated that captive-bred males tended to produce male-biased litters. We discuss the result in relation to recent studies that have shown that male mammals have the capacity to be arbiters of sex allocation and highlight candidate mechanisms, but consider it with caution due to the small sample size from which the result was derived. We performed a population viability analysis (PVA) to explore the potential impact of a sex ratio skew on the sustainability of the captive Numbat population under hypothetical scenarios. Our PVA revealed that supplementation with wild individuals is critical to the persistence of the captive Numbat population and that a biased sex ratio will lead to extinction of the captive colony under certain conditions. Overall, our study demonstrates that covert sex ratio skews can persist undetected in captive populations, which have the potential to become impactful and compromise population sustainability under changed management processes.

2.
Proc Biol Sci ; 290(1997): 20222452, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122257

RESUMO

Studies of socially mediated phenotypic plasticity have demonstrated adaptive male responses to the 'competitive' environment. Despite this, whether variation in the paternal social environment also influences offspring reproductive potential in an intergenerational context has not yet been examined. Here, we studied the descendants of wild-caught house mice, a destructive pest species worldwide, to address this knowledge gap. We analysed traits that define a 'competitive' phenotype in the sons of males (sires) that had been exposed to either a high-male density (competitive) or high-female density (non-competitive) environment. We report disparate reproductive strategies among the sires: high-male density led to a phenotype geared for competition, while high-female density led to a phenotype that would facilitate elevated mating frequency. Moreover, we found that the competitive responses of sires persisted in the subsequent generation, with the sons of males reared under competition having elevated sperm quality. As all sons were reared under common-garden conditions, variation in their reproductive phenotypes could only have arisen via nongenetic inheritance. We discuss our results in relation to the adaptive advantage of preparing sons for sperm competition and suggest that intergenerational plasticity is a previously unconsidered aspect in invasive mammal fertility control.


Assuntos
Sêmen , Espermatozoides , Animais , Camundongos , Masculino , Feminino , Espermatozoides/fisiologia , Reprodução , Adaptação Fisiológica , Mamíferos , Comportamento Sexual Animal
3.
Biol Lett ; 18(5): 20220058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506236

RESUMO

Male-male competition after mating (sperm competition) favours adaptations in male traits, such as elevated sperm numbers facilitated by larger testes. Ultimately, patterns of female distribution will affect the strength of sperm competition by dictating the extent to which males are able to prevent female remating. Despite this, our understanding of how the spatial and temporal distributions of mating opportunities have shaped the evolutionary course of sperm competition is limited. Here, we use phylogenetic comparative methods to explore interspecific variation in testes size in relation to patterns of female distribution in Australian rodents. We find that as mating season length (temporal distribution of females) increases, testes size decreases, which is consistent with the idea that it is difficult for males to prevent females from remating when overlap among oestrous females is temporally concentrated. Additionally, we find that social species (spatially clustered) have smaller testes than non-social species (spatially dispersed). This result suggests that males may be effective in monopolizing reproduction within social groups, which leads to reduced levels of sperm competition relative to non-social species where free-ranging females cannot be controlled. Overall, our results show that patterns of female distribution, in both space and time, can influence the strength of post-mating sexual selection among species.


Assuntos
Espermatozoides , Testículo , Animais , Austrália , Feminino , Masculino , Filogenia , Roedores
4.
Biol Reprod ; 105(4): 1043-1055, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34007991

RESUMO

Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.


Assuntos
Células do Cúmulo/fisiologia , Matriz Extracelular/fisiologia , Fertilização/fisiologia , Camundongos/fisiologia , Proteoma , Animais , Evolução Biológica , Feminino , Fertilização/genética
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200082, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070720

RESUMO

Although initially lagging behind discoveries being made in other taxa, mammalian sperm competition is now a productive and advancing field of research. Sperm competition in mammals is not merely a 'sprint-race' between the gametes of rival males, but rather a race over hurdles; those hurdles being the anatomical and physiological barriers provided by the female reproductive tract, as well as the egg and its vestments. With this in mind, in this review, I discuss progress in the field while focusing on the female perspective. I highlight ways by which sperm competition can have positive effects on female reproductive success and discuss how competitive outcomes are not only owing to dynamics between the ejaculates of rival males, but also attributable to mechanisms by which female mammals bias paternity toward favourable sires. Drawing on examples across different species-from mice to humans-I provide an overview of the accumulated evidence which firmly establishes that sperm competition is a key selective force in the evolution of male traits and detail how females can respond to increased sperm competitiveness with increased egg resistance to fertilization. I also discuss evidence for facultative responses to the sperm competition environment observed within mammal species. Overall, this review identifies shortcomings in our understanding of the specific mechanisms by which female mammals 'select' sperm. More generally, this review demonstrates how, moving forward, mammals will continue to be effective animal models for studying both evolutionary and facultative responses to sperm competition. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Mamíferos/fisiologia , Reprodução/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos/fisiologia
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200150, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070728

RESUMO

Sexual selection is believed to be responsible for the rapid divergence of male genitalia, which is a widely observed phenomenon across different taxa. Among mammals, the stimulatory role of male genitalia and female 'sensory perception' has been suggested to explain these evolutionary patterns. Recent research on house mice has shown that baculum (penis bone) shape can respond to experimentally imposed sexual selection. Here, we explore the adaptive value of baculum shape by performing two experiments that examine the effects of male and female genitalia on male reproductive success. Thus, we selected house mice (Mus musculus domesticus) from families characterized by extremes in baculum shape (relative width) and examined paternity success in both non-competitive (monogamous) and competitive (polyandrous) contexts. Our analyses revealed that the relative baculum shape of competing males influenced competitive paternity success, but that this effect was dependent on the breeding value for baculum shape of the family from which females were derived. Our data provide novel insight into the potential mechanisms underlying the evolution of the house mouse baculum and lend support to the stimulatory hypothesis for the coevolution of male and female genitalia. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Coevolução Biológica , Osso e Ossos/anatomia & histologia , Camundongos/anatomia & histologia , Camundongos/fisiologia , Paternidade , Animais , Masculino , Pênis
7.
Evolution ; 74(7): 1558-1567, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490547

RESUMO

Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.


Assuntos
Coevolução Biológica , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Camundongos/genética , Característica Quantitativa Herdável , Animais , Tamanho Corporal , Feminino , Masculino
8.
Biol Lett ; 16(6): 20190929, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32486939

RESUMO

Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male-male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male-male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive 'risk' produced lower proportions of Y-CBS compared to males that matured under 'no risk' of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.


Assuntos
Razão de Masculinidade , Espermatozoides , Animais , Feminino , Masculino , Mamíferos , Camundongos , Comportamento Sexual Animal
9.
Proc Biol Sci ; 287(1926): 20192909, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32370673

RESUMO

A shift from the traditional perspective that maternal stress is invariably costly has instigated recent interest into its adaptive role in offspring sex allocation. Stress generated by social instability has been linked to offspring sex ratio biases that favour the production of female offspring, which converges with the theoretical prediction that mothers in the poor condition are better off investing in daughters rather than sons. However, previous research has failed to disentangle two different processes: the passive consequence of maternal stress on sex-specific mortality and the adaptive effect of maternal stress at the time of conception. Here, I show that exposure to high male density social conditions leads to elevated stress hormone levels and female-biased in utero offspring sex ratios in house mice (Mus musculus domesticus), and identify that sex-specific offspring production-not sex-specific mortality-is the mechanism accounting for these sex ratio skews. This outcome reflects the optimal fitness scenario for mothers in a male-dominated environment: the production of daughters, who are guaranteed high mate availability, minimizes male-male competition for their sons. Overall, this study supports the idea that maternal stress has the potential to be adaptive and advances our understanding of how exposure to different social conditions can influence sex allocation in mammals.


Assuntos
Camundongos/fisiologia , Razão de Masculinidade , Estresse Fisiológico/fisiologia , Animais , Comportamento Animal , Feminino , Masculino , Mamíferos , Reprodução
10.
Curr Biol ; 30(4): 691-697.e3, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32008900

RESUMO

Climate change is generating an intensification of extreme environmental conditions, including frequent and severe droughts [1] that have been associated with increased social conflict in vertebrates [2-4], including humans [5]. Yet, fluctuating climatic conditions have been shown to also promote cooperative behavior and the formation of vertebrate societies over both ecological and evolutionary timescales [6]. Determining when climatic uncertainty breeds social discord or promotes cooperative living (or both) is fundamental to predicting how species will respond to anthropogenic climate change. In light of this, our limited understanding of the order of evolutionary events-that is, whether harsh environments drive the evolution of sociality [6] or, alternatively, whether sociality facilitates the invasion of harsh environments [7]-and of how cooperation and conflict coevolve in response to environmental fluctuation represent critical gaps in knowledge. Here, we perform comparative phylogenetic analyses on Australian rodents (Muridae: Hydromyini) and show that sociality evolves only under harsh conditions of low rainfall and high temperature variability and never under relatively benign conditions. Further, we demonstrate that the requirement to cooperate under harsh climatic conditions generates social competition for reproduction within groups (reflected in the degree of sexual dimorphism in traits associated with intrasexual competition [8]), which in turn shapes the evolution of body size dimorphism. Our findings suggest that as the environment becomes more severe [1], the resilience of some species may hinge on their propensity to live socially, but in so doing, this is likely to affect the evolution of traits that mediate social conflict.


Assuntos
Evolução Biológica , Clima , Muridae/fisiologia , Comportamento Social , Animais , Austrália , Mudança Climática , Feminino , Masculino
11.
Mol Biol Evol ; 37(4): 1114-1117, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821497

RESUMO

Reproductive proteins typically have high rates of molecular evolution, and are assumed to be under positive selection from sperm competition and cryptic female choice. However, ascribing evolutionary divergence in the genome to these processes of sexual selection from patterns of association alone is problematic. Here, we use an experimental manipulation of postmating sexual selection acting on populations of house mice and explore its consequences for the expression of seminal vesicle secreted (SVS) proteins. Following 25 generations of selection, males from populations subjected to postmating sexual selection had evolved increased expression of at least two SVS genes that exhibit the signature of positive selection at the molecular level, SVS1 and SVS2. These proteins contribute to mating plug formation and sperm survival in the female reproductive tract. Our data thereby support the view that sexual selection is responsible for the evolution of these seminal fluid proteins.


Assuntos
Proteínas Secretadas pela Vesícula Seminal/genética , Seleção Sexual , Animais , Evolução Biológica , Feminino , Expressão Gênica , Masculino , Camundongos
12.
Evol Lett ; 3(4): 392-402, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388448

RESUMO

Different stages during development are important when it comes to phenotypic adjustments in response to external stimuli. Critical stages in mammals are the prenatal phase, where embryos are exposed to a milieu of sex steroid hormones, and the early-postnatal phase, where littermates interact and experience their incipient social environment. Further, the postmaternal environment will influence the development of traits that are linked to reproductive success in adulthood. Accumulated evidence of male-driven sex allocation establishes the currently untested hypothesis that the sperm sex ratio is a plastic trait that can be mediated to align with prevailing social conditions. Here, we used natural variation in the maternal environment and experimentally manipulated the postmaternal environment to identify the importance of these developmental phases on sperm sex ratio adjustments in wild house mice (Mus musculus domesticus). We found that male density in both environments was predictive of sperm sex ratios at sexual maturity: males from more male-biased litters and males maturing under high male density produced elevated levels of Y-chromosome-bearing sperm. Our findings indicate that the sperm sex ratio is a variable phenotypic trait that responds to the external environment, and highlight the potential that these adjustments function as a mechanism of male-driven sex allocation.

13.
J Evol Biol ; 32(10): 1014-1026, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211909

RESUMO

Landscape topography and the mobility of individuals will have fundamental impacts on a species' population structure, for example by enhancing or reducing gene flow and therefore influencing the effective size and genetic diversity of the population. However, social organization will also influence population genetic structure. For example, species that live and breed in cooperative groups may experience high levels of inbreeding and strong genetic drift. The western pebble-mound mouse (Pseudomys chapmani), which occupies a highly heterogeneous, semi-arid landscape in Australia, is an enigmatic social mammal that has the intriguing behaviour of working cooperatively in groups to build permanent pebble mounds above a subterranean burrow system. Here, we used both nuclear (microsatellite) and mitochondrial (mtDNA) markers to analyse the range-wide population structure of western pebble-mound mice sourced from multiple social groups. We observed high levels of genetic diversity at the broad scale, very weak genetic differentiation at a finer scale and low levels of inbreeding. Our genetic analyses suggest that the western pebble-mound mouse population is both panmictic and highly viable. We conclude that high genetic connectivity across the complex landscape is a consequence of the species' ability to permeate their environment, which may be enhanced by "boom-bust" population dynamics driven by the semi-arid climate. More broadly, our results highlight the importance of sampling strategies to infer social structure and demonstrate that sociality is an important component of population genetic structure.


Assuntos
Ecossistema , Muridae/genética , Comportamento Social , Animais , Austrália , DNA Mitocondrial , Variação Genética , Genótipo , Repetições de Microssatélites
14.
J Evol Biol ; 31(11): 1647-1654, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074655

RESUMO

Due to the physiological cost of sperm production, males are expected to be prudent in their expenditure and adjust their investment according to current social conditions. Strategic adjustments in sperm expenditure during development can be made via changes in testes size, sperm production rates or testes tissue composition. Here, using house mice, we test the hypothesis that elevated sperm production is driven by a plastic response in the spatial organization of the testes. We reared males under different social conditions (competitive vs. noncompetitive) and quantified sperm number and the proportion of sperm-producing tissue within the testes. Further, because sperm quality is a critical determinant of competitive fertilization success, we used computer-assisted sperm analysis to quantify six sperm motility traits. Our investigation revealed that males reared in an environment with a perceived risk of reproductive competition produced more sperm in the absence of changes in testes morphology. We discuss this result in relation to fixed and flexible phenotypically plastic responses to future competitive conditions, and conclude that adaptive adjustments in sperm number in response to the social environment are likely attributable to variation in sperm production rate. Further, we found no difference in in vitro sperm motility parameters among males from the different social environment regimes. Overall, this investigation improves our understanding of the mechanisms of male plastic responses to reproductive competition experienced during sexual development.


Assuntos
Comportamento Competitivo , Espermatogênese/fisiologia , Testículo/anatomia & histologia , Animais , Masculino , Camundongos , Meio Social , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Testículo/fisiologia
15.
Proc Biol Sci ; 285(1882)2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-30051823

RESUMO

Males are known to adjust their expenditure on testes growth and sperm production in response to sperm competition risk. Genital morphology can also contribute to competitive fertilization success but whether male genital morphology can respond plastically to the sperm competition environment has received little attention. Here, we exposed male house mice to two different sperm competition environments during their sexual development and quantified phenotypic plasticity in baculum morphology. The sperm competition environment generated plasticity in body growth. Males maturing under sperm competition risk were larger and heavier than males maturing under no sperm competition risk. We used a landmark-based geometric morphometric approach to measure baculum size and shape. Independent of variation in body size, males maintained under risk of sperm competition had a relatively thicker and more distally extended baculum bulb compared with males maintained under no sperm competition risk. Plasticity in baculum shape paralleled evolutionary responses to selection from sperm competition reported in previous studies of house mice. Our findings provide experimental evidence of socially mediated phenotypic plasticity in male genitalia.


Assuntos
Genitália Masculina/anatomia & histologia , Camundongos/crescimento & desenvolvimento , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Tamanho Corporal , Masculino , Camundongos/anatomia & histologia , Fenótipo , Maturidade Sexual
16.
Ann N Y Acad Sci ; 1422(1): 48-64, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524360

RESUMO

Males and females rarely have identical evolutionary interests over reproduction, and when the fitness of both sexes is dependent upon paternity outcomes, sexual conflict over fertilization is inevitable. In internal fertilizers, the female tract is a formidable selective force on the number and integrity of sperm that reach the egg. Selection on sperm quality is intensified when females mate multiply and rival males are forced to compete for fertilizations. While male adaptations to sperm competition have been well documented (e.g., increased sperm fertilizing capacity), much less attention has been given to the evolutionary consequences of postmating sexual conflict for egg form and function. Specifically, increased sperm competitiveness can be detrimental by giving rise to an elevation in reproductive failure resulting from polyspermy. Spanning literature on both internal and external fertilizers, in this review I discuss how females respond to sperm competition via fertilization barriers that mediate sperm entry. These findings, which align directly with sexual conflict theory, indicate that females have greater control over fertilization than has previously been appreciated. I then consider the implications of gametic sexual conflict in relation to the development of reproductive isolation and speculate on potential mechanisms accounting for "egg defensiveness." Finally, I discuss the functional significance of egg defensiveness for both the sexes, and sperm selection for females.


Assuntos
Comportamento Sexual Animal , Interações Espermatozoide-Óvulo , Animais , Conflito Psicológico , Feminino , Masculino , Óvulo/fisiologia , Reprodução , Espermatozoides/fisiologia
18.
Mol Ecol ; 26(20): 5784-5792, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28636785

RESUMO

Drive genes are genetic elements that manipulate the 50% ratio of Mendelian inheritance in their own favour, allowing them to rapidly propagate through populations. The action of drive genes is often hidden, making detection and identification inherently difficult. Yet drive genes can have profound evolutionary consequences for the populations that harbour them: most known drivers are detrimental to organismal gamete development, reproduction and survival. In this study, we identified the presence of a well-known drive gene called t haplotype post hoc in eight replicate selection lines of house mice that had been evolving under enforced monandry or polyandry for 20 generations. Previous work on these selection lines reported an increase in sperm competitive ability in males evolving under polyandry. Here, we show that this evolutionary response can be partly attributed to gene drive. We demonstrate that drive-carrying males are substantially compromised in their sperm competitive ability. As a consequence, we found that t frequencies declined significantly in the polyandrous lines while remaining at stable, high levels in the monandrous lines. For the first time in a vertebrate, we thus provide direct experimental evidence that the mating system of a species can have important repercussions on the spread of drive genes over evolutionary relevant timescales. Moreover, our work highlights how the covert action of drive genes can have major, potentially unintended impact on our study systems.


Assuntos
Evolução Molecular , Genética Populacional , Padrões de Herança , Camundongos/genética , Espermatozoides/fisiologia , Animais , Feminino , Aptidão Genética , Haplótipos , Masculino , Reprodução/genética
19.
Trends Ecol Evol ; 32(5): 368-382, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28318651

RESUMO

Cryptic female choice (CFC) represents postmating intersexual selection arising from female-driven mechanisms at or after mating that bias sperm use and impact male paternity share. Although biologists began to study CFC relatively late, largely spurred by Eberhard's book published 20 years ago, the field has grown rapidly since then. Here, we review empirical progress to show that numerous female processes offer potential for CFC, from mating through to fertilization, although seldom has CFC been clearly demonstrated. We then evaluate functional implications, and argue that, under some conditions, CFC might have repercussions for female fitness, sexual conflict, and intersexual coevolution, with ramifications for related evolutionary phenomena, such as speciation. We conclude by identifying directions for future research in this rapidly growing field.


Assuntos
Comportamento de Escolha , Comportamento Sexual Animal , Animais , Evolução Biológica , Feminino , Aptidão Genética , Masculino , Reprodução , Espermatozoides
20.
Trends Ecol Evol ; 31(4): 315-326, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26920473

RESUMO

Meiotic drivers are genetic variants that selfishly manipulate the production of gametes to increase their own rate of transmission, often to the detriment of the rest of the genome and the individual that carries them. This genomic conflict potentially occurs whenever a diploid organism produces a haploid stage, and can have profound evolutionary impacts on gametogenesis, fertility, individual behaviour, mating system, population survival, and reproductive isolation. Multiple research teams are developing artificial drive systems for pest control, utilising the transmission advantage of drive to alter or exterminate target species. Here, we review current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion.


Assuntos
Evolução Biológica , Fenômenos Ecológicos e Ambientais/genética , Meiose/genética , Animais , Feminino , Gametogênese/genética , Masculino , Reprodução/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA