Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 9(45): 8582-8589, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568783

RESUMO

A synthetic enzyme is reported that electrocatalytically reduces protons to hydrogen (H2) in water near neutral pH under aerobic conditions. Cobalt mimochrome VI*a (CoMC6*a) is a mini-protein with a cobalt deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Comparison of the activity of CoMC6*a to that of cobalt microperoxidase-11 (CoMP11-Ac), a cobalt porphyrin catalyst with a single "proximal" peptide and no organized secondary structure, reveals that CoMC6*a has significantly enhanced longevity, yielding a turnover number exceeding 230 000, in comparison to 25 000 for CoMP11-Ac. Furthermore, comparison of cyclic voltammograms of CoMC6*a and CoMP11-Ac indicates that the trifluoroethanol-induced folding of CoMC6*a lowers the overpotential for catalytic H2 evolution by up to 100 mV. These results demonstrate that even a minimal polypeptide matrix can enhance longevity and efficiency of a H2-evolution catalyst.

2.
Chembiochem ; 19(17): 1823-1826, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29898243

RESUMO

Rational design provides an attractive strategy to tune and control the reactivity of bioinspired catalysts. Although there has been considerable progress in the design of heme oxidase mimetics with active-site environments of ever-growing complexity and catalytic efficiency, their stability during turnover is still an open challenge. Herein, we show that the simple incorporation of two 2-aminoisobutyric acids into an artificial peptide-based peroxidase results in a new catalyst (FeIII -MC6*a) with higher resistance against oxidative damage and higher catalytic efficiency. The turnover number of this catalyst is twice as high as that of its predecessor. These results point out the protective role exerted by the peptide matrix and pave the way to the synthesis of robust bioinspired catalysts.


Assuntos
Materiais Biomiméticos/química , Peptídeos/química , Materiais Biomiméticos/síntese química , Catálise , Heme/química , Ferro/química , Cinética , Mutação , Oxirredução , Peptídeos/síntese química , Peptídeos/genética , Peroxidase/química
3.
Biopolymers ; 109(10): e23107, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29468636

RESUMO

Inspired by natural heme-proteins, scientists have attempted for decades to design efficient and selective metalloporphyrin-based oxidation catalysts. Starting from the pioneering work on small molecule mimics in the late 1970s, we have assisted to a tremendous progress in designing cages of different nature and complexity, able to accommodate metalloporphyrins. With the intent of tuning and controlling their reactivity, more and more sophisticated and diverse environments are continuously exploited. In this review, we will survey the current state of art in oxidation catalysis using iron- and manganese-porphyrins housed within designed or engineered protein cages. We will also examine the innovative metal-organic framework (MOF) systems, exploited to achieving an enzyme-like environment around the metalloporphyrin cofactor.


Assuntos
Enzimas/metabolismo , Ferro/química , Manganês/química , Porfirinas/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA