Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599790

RESUMO

Animals routinely encounter environmental (e.g., high temperatures and hypoxia) as well as physiological perturbations (e.g., exercise and digestion) that may threaten homeostasis. However, comparing the relative threat or "disruptiveness" imposed by different stressors is difficult, as stressors vary in their mechanisms, effects, and timescales. We exploited the fact that several acute stressors can induce the loss of equilibrium (LOE) in fish to (i) compare the metabolic recovery profiles of three environmentally relevant stressors and (ii) test the concept that LOE could be used as a physiological calibration for the intensity of different stressors. We focused on Etheostoma caeruleum, a species that routinely copes with environmental fluctuations in temperature and oxygen and that relies on burst swimming to relocate and avoid predators, as our model. Using stop-flow (intermittent) respirometry, we tracked the oxygen consumption rate (MO2) as E. caeruleum recovered from LOE induced by hypoxia (PO2 at LOE), warming (critical thermal maximum, CTmax), or exhaustive exercise. Regardless of the stressor used, E. caeruleum recovered rapidly, returning to routine MO2 within ~3 h. Fish recovering from hypoxia and warming had similar maximum MO2, aerobic scopes, recovery time, and total excess post-hypoxia or post-warming oxygen consumption. Though exhaustive exercise induced a greater maximum MO2 and corresponding higher aerobic scope than warming or hypoxia, its recovery profile was otherwise similar to the other stressors, suggesting that "calibration" to a physiological state such as LOE may be a viable conceptual approach for investigators interested in questions related to multiple stressors, cross tolerance, and how animals cope with challenges to homeostasis.

2.
J Fish Biol ; 104(6): 1888-1898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506425

RESUMO

Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.


Assuntos
Brânquias , Oxigênio , Rios , Animais , Brânquias/anatomia & histologia , Brânquias/fisiologia , Ontário , Oxigênio/metabolismo , Hipóxia , Perciformes/fisiologia , Perciformes/anatomia & histologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38253199

RESUMO

Fish gills are complex organs that have direct contact with the environment and perform numerous functions including gas exchange and ion regulation. Determining if gill morphometry can change under different environmental conditions to maintain and/or improve gas exchange and ion regulation is important for understanding if gill plasticity can improve survival with increasing environmental change. We assessed gill morphology (gas exchange and ion regulation metrics), hematocrit and gill Na+/K+ ATPase activity of wild-captured blackside darter (Percina maculata), greenside darter (Etheostoma blennioides), and johnny darter (Etheostoma nigrum) at two temperatures (10 and 25 °C) and turbidity levels (8 and 94 NTU). Samples were collected August and October 2020 in the Grand River to assess temperature differences, and August 2020 in the Thames River to assess turbidity differences. Significant effects of temperature and/or turbidity only impacted ionocyte number, lamellae width, and hematocrit. An increase in temperature decreased ionocyte number while an increase in turbidity increased lamellae width. Hematocrit had a species-specific response for both temperature and turbidity. Findings suggest that the three darter species have limited plasticity in gill morphology, with no observed compensatory changes in hematocrit or Na+/K+ ATPase activity to maintain homeostasis under the different environmental conditions.


Assuntos
Brânquias , Rios , Animais , Temperatura , Brânquias/metabolismo , Sódio/metabolismo , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031957

RESUMO

Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.


Assuntos
Animais de Laboratório , Animais Selvagens , Animais , Animais Selvagens/fisiologia , Animais de Laboratório/fisiologia
5.
Conserv Physiol ; 11(1): coad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926473

RESUMO

Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.

6.
Conserv Physiol ; 9(1): coab057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35928053

RESUMO

Anthropogenic stressors are predicted to increase water temperature, which can influence physiological, individual, and population processes in fishes. We assessed the critical thermal maximum (CTmax) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada. Field trials were conducted stream side June-November 2019 in the Grand River, Ontario, to encompass a range of ambient water temperatures (7-25°C) for which agitation temperature (Tag) and CTmax were determined. Additional measures were taken in the comparatively more turbid Thames River to test the effect of turbidity on both measures. In the Grand, Tag and CTmax ranged from 23°C to 33°C and 27°C to 37°C, respectively, and both significantly increased with ambient water temperature, with a high acclimation response ratio (0.49). The thermal safety margin (difference between ambient temperatures and CTmax) was smallest in July and August (~11°C) indicating that eastern sand darter lives closer to its physiological limit in summer. The between-river comparison indicated that turbidity had no significant influence on Tag and CTmax. Comparison of CTmax with in-river temperatures suggested that mean stream temperature 24 hours before the trial was most important for determining CTmax. Fish mass, temperature variance and maximum temperature in the 24-hour period prior to the CTmax trial were also shown to have some effect on determining CTmax. Overall, study results better define the sensitivity of eastern sand darter to temperature changes across the growing season and provide information to assess the availability of suitable thermal habitat for conservation purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA