Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L1003-L1014, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284925

RESUMO

Dysregulated protease activity is thought to cause parenchymal and airway damage in chronic obstructive pulmonary disease (COPD). Multiple proteases have been implicated in COPD, and identifying their substrates may reveal new disease mechanisms and treatments. However, as proteases interact with many substrates that may be protease inhibitors or proteases themselves, these webs of protease interactions make the wider consequences of therapeutically targeting proteases difficult to predict. We therefore used a systems approach to determine protease substrates and protease activity in COPD airways. Protease substrates were determined by proteomics using the terminal amine isotopic labeling of substrates (TAILS) methodology in paired sputum samples during stable COPD and exacerbations. Protease activity and specific protein degradation in airway samples were assessed using Western blotting, substrate assays, and ex vivo cleavage assays. Two hundred ninety-nine proteins were identified in human COPD sputum, 125 of which were proteolytically processed, including proteases, protease inhibitors, mucins, defensins, and complement and other innate immune proteins. During exacerbations, airway neutrophils and neutrophil proteases increased and more proteins were cleaved, particularly at multiple sites, consistent with degradation and inactivation. During exacerbations, different substrates were processed, including protease inhibitors, mucins, and complement proteins. Exacerbations were associated with increasing airway elastase activity and increased processing of specific elastase substrates, including secretory leukocyte protease inhibitor. Proteolysis regulates multiple processes including elastase activity and innate immune proteins in COPD airways and differs during stable disease and exacerbations. The complexity of protease, inhibitor, and substrate networks makes the effect of protease inhibitors hard to predict which should be used cautiously.


Assuntos
Aminas/metabolismo , Imunidade Inata/imunologia , Peptídeo Hidrolases/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório/metabolismo , Idoso , Feminino , Humanos , Elastase de Leucócito/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Inibidores de Proteases/farmacologia , Proteólise , Proteômica/métodos , Sistema Respiratório/imunologia , Inibidor Secretado de Peptidases Leucocitárias/farmacologia , Escarro/imunologia , Escarro/metabolismo
2.
Mol Pharm ; 15(9): 3962-3968, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30036484

RESUMO

Angiopoietin-1 (Ang1) is a vascular protective ligand that acts through the receptor tyrosine kinase Tie2 to enhance endothelial survival and quiescence. In sepsis, diabetic retinopathy, and a range of other diseases, Ang2, an antagonist of Tie2, increases markedly. This antagonist suppresses Ang1 protective effects leading to vascular destabilization, inflammation, and endothelial death. Administration of recombinant Ang1 can counter Ang2 antagonism and restore vascular function. However, recombinant Ang1 is needed at sufficiently high concentrations to block Ang2, and the protein is difficult to produce, requires mammalian expression systems, and is prone to aggregation. Here we present an engineered synthetic Tie2 ligand that is not antagonized by Ang2 but is easy to produce and more robust than Ang1. Using a peptide phage display, we isolated a heptameric sequence that binds Tie2-ectodomain and fused this to the coiled:coil domain of cartilage oligomeric matrix protein. This pentameric protein is 60 kDa in size, expressed in E. coli, and facile to purify. The protein, designated TSL1, binds to Tie2-ectodomain in vitro and on the cell surface. TSL1 inhibits endothelial apoptosis. Crucially, TSL1 binds at a site on Tie2 distinct from the angiopoietin-binding site and is resistant to antagonism by Ang2. This engineered ligand has several advantages over recombinant Ang1 for potential therapeutic applications. The study also highlights the value of orthogonal ligands for regulating cellular receptors without being subject to antagonism or modulation by endogenous ligands.


Assuntos
Angiopoietina-2/metabolismo , Biblioteca de Peptídeos , Receptor TIE-2/metabolismo , Angiopoietina-2/genética , Apoptose/genética , Apoptose/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoprecipitação , Receptor TIE-2/genética
3.
Sci Rep ; 7(1): 3658, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623351

RESUMO

Angiopoietin-1 (Angpt1) is a glycoprotein ligand important for maintaining the vascular system. It signals via a receptor tyrosine kinase expressed on the surface on endothelial cells, Tie2. This receptor can undergo regulated ectodomain cleavage that releases the ligand-binding domain (sTie2) into the circulation. The concentration of sTie2 is increased in a range of conditions, including peripheral arterial disease and myocardial infarction, where it has been suggested to bind and block Angpt1 resulting in vascular dysfunction. Here we use a joint mathematical modelling and experimental approach to assess the potential impact of sTie2 on the ability of Angpt1 to signal. We find that the concentrations of sTie2 relative to Angpt1 required to suppress signalling by the ligand are more than ten-fold higher than those ever seen in normal or disease conditions. In contrast to the endogenous sTie2, an engineered form of sTie2, which presents dimeric ligand binding sites, inhibits Angpt1 signalling at seventy-fold lower concentrations. While loss of Tie2 ectodomain can suppress Angpt1 signalling locally in the cells in which the receptor is lost, our study shows that the resulting increase in circulating sTie2 is unlikely to affect Angpt1 activity elsewhere in the body.

4.
Protein Sci ; 25(2): 352-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26509591

RESUMO

Directed evolution is a powerful tool for engineering protein function. The process of directed evolution involves iterative rounds of sequence diversification followed by assaying activity of variants and selection. The range of sequence variants and linked activities generated in the course of an evolution are a rich information source for investigating relationships between sequence and function. Key residue positions determining protein function, combinatorial contributors to activity and even potential functional mechanisms have been revealed in directed evolutions. The recent application of high throughput sequencing substantially increases the information that can be retrieved from directed evolution experiments. Combined with computational analysis this additional sequence information has allowed high-resolution analysis of individual residue contributions to activity. These developments promise to significantly enhance the depth of insight that experimental evolution provides into mechanisms of protein function.


Assuntos
Evolução Molecular Direcionada , Engenharia de Proteínas , Proteínas/genética , Proteínas/metabolismo , Animais , Evolução Molecular Direcionada/métodos , Humanos , Mutação , Engenharia de Proteínas/métodos , Proteínas/química , Análise de Sequência de Proteína/métodos
5.
Biomacromolecules ; 11(5): 1314-25, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20405854

RESUMO

Accumulation of PrP(Sc), an insoluble and protease-resistant pathogenic isoform of the cellular prion protein (PrP(C)), is a hallmark in prion diseases. Branched polyamines, including PPI (poly(propylene imine)) dendrimers, are able to remove protease resistant PrP(Sc) and abolish infectivity, offering possible applications for therapy. These dendrimer types are thought to act through their positively charged amino surface groups. In the present study, the molecular basis of the antiprion activity of dendrimers was further investigated, employing modified PPI dendrimers in which the positively charged amino surface groups were substituted with neutral carbohydrate units of maltose (mPPI) or maltotriose (m3PPI). Modification of surface groups greatly reduced the toxicity associated with unmodified PPI but did not abolish its antiprion activity, suggesting that the presence of cationic surface groups is not essential for dendrimer action. PPI and mPPI dendrimers of generation 5 were equally effective in reducing levels of protease-resistant PrP(Sc) (PrP(res)) in a dose- and time-dependent manner in ScN2a cells and in pre-existing aggregates in homogenates from infected brain. Solubility assays revealed that total levels of PrP(Sc) in scrapie-infected mouse neuroblastoma (ScN2a) cells were reduced by mPPI. Coupled with the known ability of polyamino dendrimers to render protease-resistant PrP(Sc) in pre-existing aggregates of PrP(Sc) susceptible to proteolysis, these findings strongly suggest that within infected cells dendrimers reduce total amounts of PrP(Sc) by mediating its denaturation and subsequent elimination.


Assuntos
Aziridinas/química , Dendrímeros/química , Peptídeo Hidrolases/química , Proteínas PrPSc/química , Animais , Western Blotting , Células Cultivadas , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA