Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Entomol ; 46(5): 1070-1079, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981639

RESUMO

Phenotypic plasticity involves adaptive responses to predictable environmental fluctuations and may promote evolutionary change. We studied the regulation of phenotypic plasticity in an important agricultural pollinator, the solitary alfalfa leafcutting bee (Megachile rotundata F.). Specifically, we investigated how larval nutrition affects M. rotundata diapause plasticity and how diapause plasticity affects adult female reproductive behavior. Field surveys and laboratory manipulations of aspects of larval diet demonstrated nutritional regulation of M. rotundata diapause plasticity. Manipulation of larval diet quality through the addition of royal jelly, the caste-determining substance of the honey bee Apis mellifera L., increased the probability of diapause in M. rotundata. We also found that larval nutrition and diapause status affected M. rotundata adult female reproductive behavior. Nutritional effects on larval diapause that also impact adult fitness have intriguing implications for the evolution of developmental plasticity in bees. In particular, as the solitary lifestyle of M. rotundata is considered to be the ancestral condition in bees, nutritionally regulated plasticity may have been an ancestral condition in all bees that facilitated the evolution of other forms of phenotypic plasticity, such as the castes of social bees.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Abelhas/fisiologia , Fenótipo , Animais , Peso Corporal , Diapausa de Inseto , Feminino , Larva/fisiologia , Comportamento de Nidação
2.
Mol Biol Evol ; 33(3): 670-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576851

RESUMO

As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.


Assuntos
Composição de Bases , Abelhas/classificação , Abelhas/genética , Evolução Molecular , Genoma de Inseto , Genômica , Filogenia , Animais , Genes de Insetos , Heterogeneidade Genética , Modelos Genéticos
3.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25977371

RESUMO

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Assuntos
Abelhas/genética , Evolução Molecular , Deriva Genética , Comportamento Social , Transcriptoma , Aminoácido N-Acetiltransferase , Animais , Abelhas/classificação , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma de Inseto/genética , Filogenia , Seleção Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 108 Suppl 2: 10847-54, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21690385

RESUMO

The social insects live in extraordinarily complex and cohesive societies, where many individuals sacrifice their personal reproduction to become helpers in the colony. Identifying adaptive molecular changes involved in eusocial evolution in insects is important for understanding the mechanisms underlying transitions from solitary to social living, as well as the maintenance and elaboration of social life. Here, we review recent advances made in this area of research in several insect groups: the ants, bees, wasps, and termites. Drawing from whole-genome comparisons, candidate gene approaches, and a genome-scale comparative analysis of protein-coding sequence, we highlight novel insights gained for five major biological processes: chemical signaling, brain development and function, immunity, reproduction, and metabolism and nutrition. Lastly, we make comparisons across these diverse approaches and social insect lineages and discuss potential common themes of eusocial evolution, as well as challenges and prospects for future research in the field.


Assuntos
Evolução Molecular , Insetos/genética , Animais , Comportamento Animal , Genoma de Inseto , Insetos/crescimento & desenvolvimento , Seleção Genética , Comportamento Sexual Animal
5.
Proc Natl Acad Sci U S A ; 108(18): 7472-7, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21482769

RESUMO

Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality.


Assuntos
Abelhas/genética , Evolução Biológica , Hierarquia Social , Filogenia , Comportamento Social , Animais , Sequência de Bases , Metabolismo dos Carboidratos/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Genes de Insetos/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Transdução de Sinais/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA