Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuroendocrinol ; 35(6): e13302, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280378

RESUMO

Polycystic ovary syndrome (PCOS) is a female endocrine disorder that is associated with prenatal exposure to excess androgens. In prenatally androgenized (PNA) mice that model PCOS, GABAergic neural transmission to and innervation of GnRH neurons is increased. Evidence suggests that elevated GABAergic innervation originates in the arcuate nucleus (ARC). We hypothesized that GABA-GnRH circuit abnormalities are a direct consequence of PNA, resulting from DHT binding to androgen receptor (AR) in the prenatal brain. However, whether prenatal ARC neurons express AR at the time of PNA treatment is presently unknown. We used RNAScope in situ hybridization to localize AR mRNA (Ar)-expressing cells in healthy gestational day (GD) 17.5 female mouse brains and to assess coexpression levels in specific neuronal phenotypes. Our study revealed that less than 10% of ARC GABA cells expressed Ar. In contrast, we found that ARC kisspeptin neurons, critical regulators of GnRH neurons, were highly colocalized with Ar. Approximately 75% of ARC Kiss1-expressing cells also expressed Ar at GD17.5, suggesting that ARC kisspeptin neurons are potential targets of PNA. Investigating other neuronal populations in the ARC we found that ~50% of pro-opiomelanocortin (Pomc) cells, 22% of tyrosine hydroxylase (Th) cells, 8% of agouti-related protein (Agrp) cells and 8% of somatostatin (Sst) cells express Ar. Lastly, RNAscope in coronal sections showed Ar expression in the medial preoptic area (mPOA), and the ventral part of the lateral septum (vLS). These Ar-expressing regions were highly GABAergic, and 22% of GABA cells in the mPOA and 25% of GABA cells in the vLS also expressed Ar. Our findings identify specific neuronal phenotypes in the ARC, mPOA, and vLS that are androgen sensitive in late gestation. PNA-induced functional changes in these neurons may be related to the development of impaired central mechanisms associated with PCOS-like features.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Humanos , Camundongos , Feminino , Gravidez , Animais , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios GABAérgicos/fisiologia , Encéfalo/metabolismo , Virilismo/metabolismo
2.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37191144

RESUMO

Polycystic ovarian syndrome (PCOS) is the leading cause of anovulatory infertility and is a heterogenous condition associated with a range of reproductive and metabolic impairments. While its etiology remains unclear, hyperandrogenism and impaired steroid negative feedback have been identified as key factors underpinning the development of PCOS-like features both clinically and in animal models. We tested the hypothesis that androgen signaling in kisspeptin-expressing neurons, which are key drivers of the neuroendocrine reproductive axis, is critically involved in PCOS pathogenesis. To this end, we used a previously validated letrozole (LET)-induced hyperandrogenic mouse model of PCOS in conjunction with Cre-lox technology to generate female mice exhibiting kisspeptin-specific deletion of androgen receptor (KARKO mice) to test whether LET-treated KARKO females are protected from the development of reproductive and metabolic PCOS-like features. LET-treated mice exhibited hyperandrogenism, and KARKO mice exhibited a significant reduction in the coexpression of kisspeptin and androgen receptor mRNA compared to controls. In support of our hypothesis, LET-treated KARKO mice exhibited improved estrous cyclicity, ovarian morphology, and insulin sensitivity in comparison to LET-treated control females. However, KARKO mice were not fully protected from the effects of LET-induced hyperandrogenism and still exhibited reduced corpora lutea numbers and increased body weight gain. These data indicate that increased androgen signaling in kisspeptin-expressing neurons plays a critical role in PCOS pathogenesis but highlight that other mechanisms are also involved.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Androgênios/metabolismo , Modelos Animais de Doenças , Hiperandrogenismo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Letrozol , Neurônios/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
Life (Basel) ; 10(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344561

RESUMO

Maternal obesity during pregnancy is associated with a greater risk of poor health outcomes in offspring, including obesity, metabolic disorders, and anxiety, however the incidence of these diseases differs for males and females. Similarly, animal models of maternal obesity have reported sex differences in offspring, for both metabolic outcomes and anxiety-like behaviors. The ventromedial nucleus of the hypothalamus (VMN) is a brain region known to be involved in the regulation of both metabolism and anxiety, and is well documented to be sexually dimorphic. As the VMN is largely composed of glutamatergic neurons, which are important for its functions in modulating metabolism and anxiety, we hypothesized that maternal obesity may alter the number of glutamatergic neurons in the offspring VMN. We used a mouse model of a maternal high-fat diet (mHFD), to examine mRNA expression of the glutamatergic neuronal marker Satb2 in the mediobasal hypothalamus of control and mHFD offspring at GD17.5. We found sex differences in Satb2 expression, with mHFD-induced upregulation of Satb2 mRNA in the mediobasal hypothalamus of female offspring, compared to controls, but not males. Using immunohistochemistry, we found an increase in the number of SATB2-positive cells in female mHFD offspring VMN, compared to controls, which was localized to the rostral region of the nucleus. These data provide evidence that maternal nutrition during gestation alters the developing VMN, possibly increasing its glutamatergic drive of offspring in a sex-specific manner, which may contribute to sexual dimorphism in offspring health outcomes later in life.

4.
Psychoneuroendocrinology ; 96: 132-141, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940426

RESUMO

Maternal obesity during pregnancy can impact long-term health, predisposition to disease, and risk of neurological disorders in offspring. This may arise from disruption to epigenetic processes during offspring brain development. Using a maternal high fat diet (mHFD) mouse model, we investigated the expression of genes encoding epigenetic regulators in the brains of gestational day (GD) 17.5 mHFD offspring. We found significant, regionally unique changes in expression of epigenetic regulators in the developing brain of mHFD offspring compared to controls, with Gadd45b downregulated in medial prefrontal cortex, Mecp2 downregulated in amygdala, and sex-specific downregulation of Crebbp, Dnmt3b, and Mecp2 in male mHFD hippocampus. Decreased Mecp2 in the amygdala was associated with significant upregulation of the Mecp2-repressed gene, Tbr1, and an increased number of TBR1+ glutamatergic neurons in the basomedial nucleus of the amygdala. Tbr1 upregulation in amygdala was also observed in postnatal day 8 (P8) mHFD offspring, and levels of glutamate receptor gene Grin2b, and Fos, a marker for neuronal activity, were increased. Indications of heightened excitatory drive in mHFD offspring amygdala were associated with an anxiety-like phenotype, with mHFD offspring displaying altered ultrasonic vocalization characteristics at P8, and adult female mHFD offspring spending decreased time on the open arm of the Elevated Plus Maze. Together, this data provides insight into sex-specific offspring vulnerability to perinatal mHFD programming of anxiety-like behaviors.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Epigênese Genética/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Transtornos de Ansiedade , Encéfalo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Feminino , Hipocampo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteínas com Domínio T
5.
Dev Dyn ; 242(9): 1043-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23765941

RESUMO

BACKGROUND: Vertebrate muscles are defined and patterned at the stage of primary myotube formation, but there is no clear description of how these cells form in vivo. Of particular interest is whether primary myotubes are "seeded" by a unique myoblast population that differentiates as mononucleated myocytes, similar to the founder myoblasts of insects. RESULTS: We analyzed the cell populations and processes leading to initiation of primary myogenesis in limb buds of rats and mice. Pax3(+ve) myogenic precursors migrate into the limb bud and initially consolidate into dorsal and ventral muscle masses in the absence of Pax7 expression. Approximately a day later, Pax7(+ve) cells appear in the central aspect of the limb base and subsequently throughout the limb muscle masses. Primary myogenesis is initiated within each muscle mass at a time when only Pax3, and not Pax7, protein can be detected. Primary myotubes form initially as elongate mononucleated myocytes, well before cleavage of the muscle masses has occurred. Multinucleate myotubes appear approximately a day later. A similar process is seen during initiation of chick limb primary myogenesis. CONCLUSIONS: Primary myotubes of vertebrate limb muscles are initiated by mononucleated myocytes, that appear structurally analogous to the founder myoblasts of insects.


Assuntos
Membro Posterior/embriologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/biossíntese , Fatores de Transcrição Box Pareados/biossíntese , Ratos
6.
PLoS One ; 7(10): e46999, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056554

RESUMO

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are required for fertility in all mammalian species studied to date. In rodents, GnRH neuron cell bodies reside in the rostral hypothalamus, and most extend a single long neuronal process in the caudal direction to terminate at the median eminence (ME), the site of hormone secretion. The molecular cues that GnRH neurites use to grow and navigate to the ME during development, however, remain poorly described. Reverse transcription-PCR (RT-PCR) identified mRNAs encoding Netrin-1, and its receptor, DCC, in the fetal preoptic area (POA) and mediobasal hypothalamus (MBH), respectively, from gestational day 12.5 (GD12.5), a time when the first GnRH neurites extend toward the MBH. Moreover, a subpopulation of GnRH neurons from GD14.5 through GD18.5 express the Netrin-1 receptor, DCC, suggesting a role for Netrin-1/DCC signaling in GnRH neurite growth and/or guidance. In support of this notion, when GD15.5 POA explants, containing GnRH neurons actively extending neurites, were grown in three-dimensional collagen gels and challenged with exogenous Netrin-1 (100 ng/ml or 400 ng/ml) GnRH neurite growth was stimulated. In addition, Netrin-1 provided from a fixed source was able to stimulate outgrowth, although it did not appear to chemoattract GnRH neurites. Finally, the effects of Netrin-1 on the outgrowth of GnRH neurites could be inhibited by blocking either L-type voltage-gated calcium channels (VGCCs) with nifedipine (10 µM), or ryanodine receptors with ryanodine (10 µM). This is consistent with the role of Ca2+ from extra- and intracellular sources in Netrin-1/DCC-dependent growth cone motility in other neurons. These results indicate that Netrin-1 directly stimulates the growth of a subpopulation of GnRH neurites that express DCC, provide further understanding of the mechanisms by which GnRH nerve terminals arrive at their site of hormone secretion, and identify an additional neuronal population whose neurites utilize Netrin-1/DCC signaling for their development.


Assuntos
Cálcio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuritos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Espaço Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Espaço Intracelular/metabolismo , Camundongos , Fatores de Crescimento Neural/genética , Receptores de Netrina , Netrina-1 , Gravidez , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética
7.
Eur J Neurosci ; 31(1): 29-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20092553

RESUMO

Neurotrophin-3 (NT-3) is a trophic factor that is essential for the normal development and maintenance of proprioceptive sensory neurons and is widely implicated as an important modulator of synaptic function and development. We have previously found that animals lacking NT-3 have a number of structural abnormalities in peripheral nerves and skeletal muscles. Here we investigated whether haploinsufficiency-induced reduction in NT-3 resulted in impaired neuromuscular performance and synaptic function. Motor nerve terminal function was tested by monitoring the uptake/release of the fluorescent membrane dye FM1-43 by the electrophysiological examination of synaptic transmission and electron microscopic determination of synaptic vesicle density at the presynaptic active zone. We investigated skeletal muscle form and function by measuring force in response to both nerve-mediated and direct muscle stimulation and by quantification of fiber number and area from transverse sections. Synaptic transmission was not markedly different between the two groups, although the uptake and release of FM1-43 were impaired in mature NT-3-deficient mice but not in immature mice. The electron microscopic examination of mature nerve terminals showed no genotype-dependent variation in the number of synaptic vesicles near the active zone. NT-3(+/-) mice had normal soleus muscle fiber numbers but their fibers had smaller cross-sectional areas and were more densely-packed than wild-type littermates. Moreover, the muscles of adult NT-3-deficient animals were weaker than those of wild-type animals to both nerve and direct muscle stimulation. The results indicate that a reduction in NT-3 availability during development impairs motor nerve terminal maturation and synaptic vesicle recycling and leads to a reduction in muscle fiber diameter.


Assuntos
Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Neurotrofina 3/metabolismo , Animais , Animais Recém-Nascidos , Genótipo , Haplótipos , Heterozigoto , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Neurotrofina 3/deficiência , Neurotrofina 3/genética , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Sinapses/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
8.
Glia ; 56(3): 306-17, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18080292

RESUMO

This work investigates the role of NT-3 in peripheral myelination. Recent articles, based in vitro, propose that NT-3 acting through its high-affinity receptor TrkC may act to inhibit myelin formation by enhancing Schwann cell motility and/or migration. Here, we investigate this hypothesis in vivo by examining myelination formation in NT-3 mutant mice. On the day of birth, soon after the onset of myelination, axons showed normal ensheathment by Schwann cells, no change in the proportion of axons which had begun to myelinate, and no change in either myelin thickness or number of myelin lamellae. However in postnatal day 21 mice, when myelination is substantially complete, we observed an unexpected reduction in mRNA and protein levels for MAG and P(0), and in myelin thickness. This is the opposite result to that predicted from previous in vitro studies, where removal of an inhibitory NT-3 signal would have been expected to enhance myelination. These results suggest that, in vivo, the importance of NT-3 as a major support factor for Schwann cells (Meier et al., (1999) J Neurosci 19:3847-3859) over-rides its potential role as an myelin inhibitor, with the net effect that loss of NT-3 results in degradation of Schwann cell functions, including myelination. In support of this idea, Schwann cells of NT-3 null mutants showed increased expression of activated caspase-3. Finally, we observed significant reduction in width of the Schwann cell periaxonal collar in NT-3 mutant animals suggesting that loss of NT-3 and resulting reduction in MAG levels may alter signaling at the axon-glial interface.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína P0 da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Fatores de Crescimento Neural/deficiência , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Caspase 3/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , Proteína P0 da Mielina/genética , Glicoproteína Associada a Mielina/genética , Fatores de Crescimento Neural/metabolismo , Proteínas de Neurofilamentos/metabolismo , Nervos Periféricos/ultraestrutura , Células de Schwann/ultraestrutura , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA