Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 41(3): 111509, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261014

RESUMO

Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive to the hypothalamic-pituitary-adrenal (HPA) axis via α1 adrenoreceptor activation. Noradrenergic afferents are recruited preferentially by somatic, rather than psychological, stress stimuli. Stress-induced glucocorticoids feed back onto the hypothalamus to negatively regulate the HPA axis, providing a critical autoregulatory constraint that prevents glucocorticoid overexposure and neuropathology. Whether negative feedback mechanisms target stress modality-specific HPA activation is not known. Here, we describe a desensitization of the α1 adrenoreceptor activation of the HPA axis following acute stress in male mice that is mediated by rapid glucocorticoid regulation of adrenoreceptor trafficking in CRH neurons. Glucocorticoid-induced α1 receptor trafficking desensitizes the HPA axis to a somatic but not a psychological stressor. Our findings demonstrate a rapid glucocorticoid suppression of adrenergic signaling in CRH neurons that is specific to somatic stress activation, and they reveal a rapid, stress modality-selective glucocorticoid negative feedback mechanism.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Camundongos , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico , Adrenérgicos
2.
J Neurosci ; 36(32): 8461-70, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511017

RESUMO

UNLABELLED: Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT: We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala.


Assuntos
Ansiedade/patologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Endocanabinoides/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Restrição Física/fisiologia , Animais , Antieméticos/farmacologia , Ansiedade/fisiopatologia , Ácidos Araquidônicos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Benzoxazinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Glucocorticoides/farmacologia , Glicerídeos/farmacologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Rimonabanto , Transmissão Sináptica
3.
Int Rev Neurobiol ; 125: 163-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26638767

RESUMO

The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus. Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems. Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function. Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C. The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).


Assuntos
Endocanabinoides/fisiologia , Sistemas Neurossecretores/fisiologia , Endocanabinoides/farmacologia , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA