Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(10): 4681-4698, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33987649

RESUMO

The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.


Assuntos
Hipocampo/fisiopatologia , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Convulsões/fisiopatologia , Simportadores/fisiologia , Animais , Axônios/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Rede Nervosa/efeitos dos fármacos , Optogenética , Estimulação Luminosa , Células Piramidais/efeitos dos fármacos , Simportadores/antagonistas & inibidores , Cotransportadores de K e Cl-
2.
J Physiol ; 598(10): 1965-1985, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119127

RESUMO

KEY POINTS: The activity of local excitatory circuits of the subiculum has been suggested to be involved in the initiation of pathological activity in epileptic patients and experimental animal models of temporal lobe epilepsy. We have taken advantage of multimodal techniques to classify subicular cells in distinct subclasses and have investigated their morphofunctional properties and connectivity in vitro. Our results indicate that local subicular excitatory circuits are connected in a cell type-specific fashion and that synapses are preferentially established on basal vs. apical dendrites. We show that local excitatory circuits, isolated from extrasubicular inputs and pharmacologically disinhibited, are sufficient to initiate synchronous epileptiform activity in vitro. In conclusion, this work provides a high-resolution description of local excitatory circuits of the subiculum and highlights their mechanistic involvement in the generation of pathological activity. ABSTRACT: The subiculum has been suggested to be involved in the initiation of pathological discharges in human patients and animal models of temporal lobe epilepsy. Although converging evidence has revealed the existence of functional diversity within its principal neurons, much less attention has been devoted to its intrinsic connectivity and whether its local excitatory circuits are sufficient to generate epileptiform activity. Here, we have directly addressed these two key points in mouse subicular slices. First, using multivariate techniques, we have distinguished two groups of principal cells, which we have termed type 1 and type 2. These subgroups roughly overlap with what were classically indicated as regular and bursting cells, and showed differences in the extension and complexity of their apical dendrites. Functional connectivity was found both between similar (homotypic) and different (heterotypic) types of cells, with a marked asymmetry within heterotypic pairs. Unitary excitatory postsynaptic potentials (uEPSPs) revealed a high degree of variability both in amplitude, failure rate, rise time and half-width. Post hoc analysis of functionally connected pairs suggested that the observed uEPSPs were mediated by few contact sites, predominantly located on the basal dendrites. When surgically isolated from extrasubicular excitatory afferents, pharmacologically disinhibited subicular slices generated hyper-synchronous discharges. Thus, we conclude that local subicular excitatory circuits, connected according to cell type-specific rules, are sufficient to promote epileptiform activity. This conclusion fits well with a previous suggestion that local subicular events, purely mediated by excitatory connections, may underlie the pre-ictal discharges that govern interictal-ictal transitions.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Humanos , Camundongos , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA