Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371433

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear. Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to 361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions. There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those without. This significant association disappeared when these parameters were compared with the total trinucleotide repeat number. ARWMC score was significantly higher in patients who had a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in NOTCH2NLC may partly modify some clinical and imaging features of NIID.

2.
Acta Neurol Scand ; 145(5): 599-609, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35119108

RESUMO

Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare, genetic disease caused by heterozygous mutations in the CSF1R gene with rapidly progressive neurodegeneration, behavioral, cognitive, motor disturbances. OBJECTIVE: To describe four cases of CSF1R-related leukoencephalopathy from three families with two different pathogenic mutations in the tyrosine kinase domain of CSF1R and to develop an integrated presentation of inter-individual diversity of clinical presentations. METHODS: This is an observational study of a case series. Patients diagnosed with CSF1R encephalopathy were evaluated with standardized functional estimation scores and subject to analysis of cerebrospinal fluid biomarkers. Brain computed tomography (CT) and magnetic resonance imaging (MRI) were evaluated. We performed a functional phosphorylation assay to confirm the dysfunction of mutated CSF1R protein. RESULTS: Two heterozygous missense mutations in the CSF1R gene were identified, c.2344C>T; p.Arg777Trp and c.2329C>T; p.Arg782Cys. A phosphorylation assay in vitro showed markedly reduced autophosphorylation in cells expressing mutations. According to ACMG criteria, both mutations were pathogenic. A radiological investigation revealed typical white matter lesions in all cases. There was inter-individual diversity in the loss of cognitive, motor-neuronal, and extrapyramidal functions. CONCLUSIONS: Including the present cases, currently three CSF1R mutations are known in Sweden. We present a visualization tool to describe the clinical diversity, with potential use for longitudinal follow-up for this and other leukoencephalopathies.


Assuntos
Leucoencefalopatias , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Mutação/genética , Neuroimagem/métodos , Fenótipo , Suécia
3.
Neuropathol Appl Neurobiol ; 48(3): e12786, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913181

RESUMO

AIMS: Neuronal and glial inclusions comprising transactive response DNA-binding protein of 43 kDa (TDP-43) have been identified in the brains of patients with corticobasal degeneration (CBD), and a possible correlation between the presence of these inclusions and clinical phenotypes has been speculated. However, the significance of TDP-43 pathology in the pathomechanism of CBD has remained unclear. Here, we investigated the topographical relationship between TDP-43 inclusions and neuronal loss in CBD. METHODS: We estimated semi-quantitatively neuronal loss and TDP-43 pathology in the form of neuronal cytoplasmic inclusions (NCIs), astrocytic inclusions (AIs), oligodendroglial cytoplasmic inclusions (GCIs), and dystrophic neurites in 22 CNS regions in 10 patients with CBD. Then, the degree of correlation between the severity of neuronal loss and the quantity of each type of TDP-43 inclusion was assessed. We also investigated tau pathology in a similar manner. RESULTS: TDP-43 pathology was evident in nine patients. The putamen and globus pallidus were the regions most frequently affected (80%). NCIs were the most prominent form, and their quantity was significantly correlated with the severity of neuronal loss in more than half of the regions examined. The quantities of TDP-43 NCIs and tau NCIs were correlated in only a few regions. The number of regions where the quantities of TDP-43 AIs and GCIs were correlated with the severity of neuronal loss was apparently small in comparison with that of NCIs. CONCLUSIONS: TDP-43 alterations in neurons, not closely associated with tau pathology, may be involved in the pathomechanism underlying neuronal loss in CBD. There was a significant topographical correlation between neuronal cytoplasmic aggregation of TDP-43 and neuronal loss in CBD, suggesting that TDP-43 protein aberration might be associated with neuronal degeneration in CBD. There was no close correlation between the burden of TDP-43 and that of tau in neurons.


Assuntos
Degeneração Corticobasal , Proteínas de Ligação a DNA , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Corpos de Inclusão/patologia , Neurônios/patologia , Proteínas tau/metabolismo
4.
Nihon Yakurigaku Zasshi ; 156(4): 225-229, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34193701

RESUMO

Microglia originating from yolk sac exert various functions to maintain the homeostasis in the brain, and their functional breakdown appears to be involved in the pathophysiology of various neurological diseases. In this review article, loss of homeostatic microglia and new therapeutic approaches for rare neurological disorders are discussed. ASLP (adult-onset leukoencephalopathy with axonal spheroids and pigmented glia) known as a primary microgliopathy is an adult-onset leukoencephalopathy caused by CSF1R mutation. CSF1 receptor encoded by CSF1R plays an important role in the function of microglia. In brain of ALSP patients, homeostatic microglia are significantly reduced. The biallelic mutations for CSF1R cause childhood-onset severe phenotype and elimination of microglia from the brain parenchyma. Since microglia also almost disappear in CSF1R-deficient mice and rats, CSF1R deficiency and loss of microglia appear to be tightly associated across species. Based on the underlying mechanism of homeostatic microglia loss, novel approaches using cell transplantation of normal microglia-like cells have been attempted. Transplantation of wild-type bone marrow cells into Csf1r-/- mice results in replacement by donor-derived microglial-like cells in the recipient's brain. The concept of "microglial niche" may explain the rationale behind the microglial cell transplantation in disease condition(s). Hematopoietic stem cell transplantation (HSCT) has been attempted in 4 patients with ALSP. Beneficial effects by showing stabilization of the disease course have been observed. Although the effectiveness of HSCT for ALSP patients warrants further investigation, the approach of cell transplantation that replaces ruptured homeostatic microglia with normal microglia-like cells seems to be promising.


Assuntos
Leucoencefalopatias , Microglia , Adulto , Animais , Transplante de Células , Criança , Homeostase , Humanos , Camundongos , Ratos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA