Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 13(1): 11327, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491478

RESUMO

Patients with cancer are at increased risk of hospitalisation and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the SARS-CoV-2 phenotype evolution in patients with cancer since 2020 has not previously been described. We therefore evaluated SARS-CoV-2 on a UK populationscale from 01/11/2020-31/08/2022, assessing case-outcome rates of hospital assessment(s), intensive care admission and mortality. We observed that the SARS-CoV-2 disease phenotype has become less severe in patients with cancer and the non-cancer population. Case-hospitalisation rates for patients with cancer dropped from 30.58% in early 2021 to 7.45% in 2022 while case-mortality rates decreased from 20.53% to 3.25%. However, the risk of hospitalisation and mortality remains 2.10x and 2.54x higher in patients with cancer, respectively. Overall, the SARS-CoV-2 disease phenotype is less severe in 2022 compared to 2020 but patients with cancer remain at higher risk than the non-cancer population. Patients with cancer must therefore be empowered to live more normal lives, to see loved ones and families, while also being safeguarded with expanded measures to reduce the risk of transmission.


Assuntos
COVID-19 , Neoplasias , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Resultado do Tratamento , Neoplasias/complicações , Neoplasias/epidemiologia , COVID-19/complicações , COVID-19/epidemiologia , Inglaterra/epidemiologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
2.
Br J Cancer ; 128(11): 1977-1980, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081188

RESUMO

The COVID-19 pandemic has led to a range of novel and adaptive research designs. In this perspective, we use our experience coordinating the National COVID Cancer Antibody Survey to demonstrate how a balance between speed and integrity can be achieved within a hyper-accelerated study design. Using the COVID-19 pandemic as an example, we show this approach is necessary in the face of uncertain and evolving situations wherein reliable information is needed in a timely fashion to guide policy. We identify streamlined participant involvement, healthcare systems integration, data architecture and real-world real-time analytics as key areas that differentiate this design from traditional cancer trials, and enable rapid results. Caution needs to be taken to avoid the exclusion of patient subgroups without digital access or literacy. We summarise the merits and defining features of hyper-accelerated cancer studies.


Assuntos
COVID-19 , Neoplasias , Humanos , Pandemias , Imunoglobulinas , Atenção à Saúde
3.
J Pathol ; 259(2): 119-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36426824

RESUMO

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However, previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1 rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated 15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The overall concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illustrate that FOSL1 and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fibroma Desmoplásico , Fibroma , Neoplasias de Tecidos Moles , Humanos , Fibroma Desmoplásico/diagnóstico , Fibroma Desmoplásico/genética , Fibroma Desmoplásico/patologia , Fibroma/genética , Rearranjo Gênico , Hibridização In Situ , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Ubiquitina Tiolesterase/genética
4.
Eur J Cancer ; 175: 1-10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084618

RESUMO

PURPOSE: People living with cancer and haematological malignancies are at an increased risk of hospitalisation and death following infection with acute respiratory syndrome coronavirus 2. Coronavirus third dose vaccine boosters are proposed to boost waning immune responses in immunocompromised individuals and increase coronavirus protection; however, their effectiveness has not yet been systematically evaluated. METHODS: This study is a population-scale real-world evaluation of the United Kingdom's third dose vaccine booster programme for cancer patients from 8th December 2020 to 7th December 2021. The cancer cohort comprises individuals from Public Health England's national cancer dataset, excluding individuals less than 18 years. A test-negative case-control design was used to assess the third dose booster vaccine effectiveness. Multivariable logistic regression models were fitted to compare risk in the cancer cohort relative to the general population. RESULTS: The cancer cohort comprised of 2,258,553 tests from 361,098 individuals. Third dose boosters were evaluated by reference to 87,039,743 polymerase chain reaction coronavirus tests. Vaccine effectiveness against breakthrough infections, symptomatic infections, coronavirus hospitalisation and death in cancer patients were 59.1%, 62.8%, 80.5% and 94.5%, respectively. Lower vaccine effectiveness was associated with a cancer diagnosis within 12 months, lymphoma, recent systemic anti-cancer therapy (SACT) or radiotherapy. Patients with lymphoma had low levels of protection from symptomatic disease. In spite of third dose boosters, following multivariable adjustment, individuals with cancer remain at an increased risk of coronavirus hospitalisation and death compared to the population control (OR 3.38, 3.01, respectively. p < 0.001 for both). CONCLUSIONS: Third dose boosters are effective for most individuals with cancer, increasing protection from coronavirus. However, their effectiveness is heterogenous and lower than the general population. Many patients with cancer will remain at the increased risk of coronavirus infections even after 3 doses. In the case of patients with lymphoma, there is a particularly strong disparity of vaccine effectiveness against breakthrough infection and severe disease. Breakthrough infections will disrupt cancer care and treatment with potentially adverse consequences on survival outcomes. The data support the role of vaccine boosters in preventing severe disease, and further pharmacological intervention to prevent transmission and aid viral clearance to limit the disruption of cancer care as the delivery of care continues to evolve during the coronavirus pandemic.


Assuntos
COVID-19 , Neoplasias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitalização , Humanos , Pandemias , Vacinação , Eficácia de Vacinas
5.
Lancet Oncol ; 23(6): 748-757, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35617989

RESUMO

BACKGROUND: People with cancer are at increased risk of hospitalisation and death following infection with SARS-CoV-2. Therefore, we aimed to conduct one of the first evaluations of vaccine effectiveness against breakthrough SARS-CoV-2 infections in patients with cancer at a population level. METHODS: In this population-based test-negative case-control study of the UK Coronavirus Cancer Evaluation Project (UKCCEP), we extracted data from the UKCCEP registry on all SARS-CoV-2 PCR test results (from the Second Generation Surveillance System), vaccination records (from the National Immunisation Management Service), patient demographics, and cancer records from England, UK, from Dec 8, 2020, to Oct 15, 2021. Adults (aged ≥18 years) with cancer in the UKCCEP registry were identified via Public Health England's Rapid Cancer Registration Dataset between Jan 1, 2018, and April 30, 2021, and comprised the cancer cohort. We constructed a control population cohort from adults with PCR tests in the UKCCEP registry who were not contained within the Rapid Cancer Registration Dataset. The coprimary endpoints were overall vaccine effectiveness against breakthrough infections after the second dose (positive PCR COVID-19 test) and vaccine effectiveness against breakthrough infections at 3-6 months after the second dose in the cancer cohort and control population. FINDINGS: The cancer cohort comprised 377 194 individuals, of whom 42 882 had breakthrough SARS-CoV-2 infections. The control population consisted of 28 010 955 individuals, of whom 5 748 708 had SARS-CoV-2 breakthrough infections. Overall vaccine effectiveness was 69·8% (95% CI 69·8-69·9) in the control population and 65·5% (65·1-65·9) in the cancer cohort. Vaccine effectiveness at 3-6 months was lower in the cancer cohort (47·0%, 46·3-47·6) than in the control population (61·4%, 61·4-61·5). INTERPRETATION: COVID-19 vaccination is effective for individuals with cancer, conferring varying levels of protection against breakthrough infections. However, vaccine effectiveness is lower in patients with cancer than in the general population. COVID-19 vaccination for patients with cancer should be used in conjunction with non-pharmacological strategies and community-based antiviral treatment programmes to reduce the risk that COVID-19 poses to patients with cancer. FUNDING: University of Oxford, University of Southampton, University of Birmingham, Department of Health and Social Care, and Blood Cancer UK.


Assuntos
COVID-19 , Neoplasias , Vacinas Virais , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Humanos , Neoplasias/epidemiologia , SARS-CoV-2 , Eficácia de Vacinas
6.
Cancer Res ; 81(16): 4290-4304, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224371

RESUMO

In breast cancer, humoral immune responses may contribute to clinical outcomes, especially in more immunogenic subtypes. Here, we investigated B lymphocyte subsets, immunoglobulin expression, and clonal features in breast tumors, focusing on aggressive triple-negative breast cancers (TNBC). In samples from patients with TNBC and healthy volunteers, circulating and tumor-infiltrating B lymphocytes (TIL-B) were evaluated. CD20+CD27+IgD- isotype-switched B lymphocytes were increased in tumors, compared with matched blood. TIL-B frequently formed stromal clusters with T lymphocytes and engaged in bidirectional functional cross-talk, consistent with gene signatures associated with lymphoid assembly, costimulation, cytokine-cytokine receptor interactions, cytotoxic T-cell activation, and T-cell-dependent B-cell activation. TIL-B-upregulated B-cell receptor (BCR) pathway molecules FOS and JUN, germinal center chemokine regulator RGS1, activation marker CD69, and TNFα signal transduction via NFκB, suggesting BCR-immune complex formation. Expression of genes associated with B lymphocyte recruitment and lymphoid assembly, including CXCL13, CXCR4, and DC-LAMP, was elevated in TNBC compared with other subtypes and normal breast. TIL-B-rich tumors showed expansion of IgG but not IgA isotypes, and IgG isotype switching positively associated with survival outcomes in TNBC. Clonal expansion was biased toward IgG, showing expansive clonal families with specific variable region gene combinations and narrow repertoires. Stronger positive selection pressure was present in the complementarity determining regions of IgG compared with their clonally related IgA in tumor samples. Overall, class-switched B lymphocyte lineage traits were conspicuous in TNBC, associated with improved clinical outcomes, and conferred IgG-biased, clonally expanded, and likely antigen-driven humoral responses. SIGNIFICANCE: Tumor-infiltrating B lymphocytes assemble in clusters, undergoing B-cell receptor-driven activation, proliferation, and isotype switching. Clonally expanded, IgG isotype-biased humoral immunity associates with favorable prognosis primarily in triple-negative breast cancers.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina G/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antígenos CD/biossíntese , Antígenos CD20/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Linfócitos B/patologia , Sequência de Bases , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina D/biossíntese , Imuno-Histoquímica , Lectinas Tipo C/biossíntese , Linfócitos/citologia , Modelos Estatísticos , Fenótipo , Prognóstico , RNA-Seq , Receptores de Antígenos de Linfócitos B/metabolismo , Análise de Célula Única , Transcriptoma , Neoplasias de Mama Triplo Negativas/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Interface Usuário-Computador
7.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831375

RESUMO

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Assuntos
Heterogeneidade Genética , Neoplasias/genética , Variações do Número de Cópias de DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
8.
Ecancermedicalscience ; 15: ed117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047077

RESUMO

The COVID-19 pandemic is an era-defining, international emergency impacting the global economy, politics and countless individual lives. People living with cancer have increased risk of hospitalisation and mortality from COVID-19. There are limited data regarding vaccine efficacy in people with cancer, with lack of empirical evidence to guide vaccine strategy in cancer patients fostering uncertainty. Vulnerable groups, for whom vaccination protection may be attenuated, now carry the greatest burden of risk amongst the population. The cancer community needs to reconsider the potential on-going impact of COVID-19 and develop and plan new programs of work to mitigate it. Multiple potential future scenarios now exist, ranging from full protection from COVID-19 for cancer patients via herd immunity to viral evolution for vaccine resistance and increased virulence. Defining those most vulnerable to COVID-19 post-vaccination will require large-scale data and evidence to comprehensively identify factors that reduce vaccine efficacy. Once identified, protecting these groups through transmission and mortality risk reduction will become paramount. As the pandemic progresses, "protecting the vulnerable" may enable a return to normal for the majority, whilst still protecting individuals living with and beyond cancer who already live with the challenges of having a cancer diagnosis.

9.
J Pathol ; 252(4): 433-440, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866294

RESUMO

The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3-3A or H3-3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3-mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3-mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas/genética , Transformação Celular Neoplásica/genética , Metilação de DNA , Tumor de Células Gigantes do Osso/genética , Mutação , Neoplasias Ósseas/patologia , Transformação Celular Neoplásica/patologia , Tumor de Células Gigantes do Osso/patologia , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sequenciamento Completo do Genoma
10.
Lancet Oncol ; 21(10): 1309-1316, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853557

RESUMO

BACKGROUND: Patients with cancer are purported to have poor COVID-19 outcomes. However, cancer is a heterogeneous group of diseases, encompassing a spectrum of tumour subtypes. The aim of this study was to investigate COVID-19 risk according to tumour subtype and patient demographics in patients with cancer in the UK. METHODS: We compared adult patients with cancer enrolled in the UK Coronavirus Cancer Monitoring Project (UKCCMP) cohort between March 18 and May 8, 2020, with a parallel non-COVID-19 UK cancer control population from the UK Office for National Statistics (2017 data). The primary outcome of the study was the effect of primary tumour subtype, age, and sex and on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence and the case-fatality rate during hospital admission. We analysed the effect of tumour subtype and patient demographics (age and sex) on prevalence and mortality from COVID-19 using univariable and multivariable models. FINDINGS: 319 (30·6%) of 1044 patients in the UKCCMP cohort died, 295 (92·5%) of whom had a cause of death recorded as due to COVID-19. The all-cause case-fatality rate in patients with cancer after SARS-CoV-2 infection was significantly associated with increasing age, rising from 0·10 in patients aged 40-49 years to 0·48 in those aged 80 years and older. Patients with haematological malignancies (leukaemia, lymphoma, and myeloma) had a more severe COVID-19 trajectory compared with patients with solid organ tumours (odds ratio [OR] 1·57, 95% CI 1·15-2·15; p<0·0043). Compared with the rest of the UKCCMP cohort, patients with leukaemia showed a significantly increased case-fatality rate (2·25, 1·13-4·57; p=0·023). After correction for age and sex, patients with haematological malignancies who had recent chemotherapy had an increased risk of death during COVID-19-associated hospital admission (OR 2·09, 95% CI 1·09-4·08; p=0·028). INTERPRETATION: Patients with cancer with different tumour types have differing susceptibility to SARS-CoV-2 infection and COVID-19 phenotypes. We generated individualised risk tables for patients with cancer, considering age, sex, and tumour subtype. Our results could be useful to assist physicians in informed risk-benefit discussions to explain COVID-19 risk and enable an evidenced-based approach to national social isolation policies. FUNDING: University of Birmingham and University of Oxford.


Assuntos
Infecções por Coronavirus/mortalidade , Neoplasias/mortalidade , Pandemias , Pneumonia Viral/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Neoplasias/virologia , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Estudos Prospectivos , Medição de Risco , Fatores de Risco , SARS-CoV-2
11.
Lancet ; 395(10241): 1919-1926, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32473682

RESUMO

BACKGROUND: Individuals with cancer, particularly those who are receiving systemic anticancer treatments, have been postulated to be at increased risk of mortality from COVID-19. This conjecture has considerable effect on the treatment of patients with cancer and data from large, multicentre studies to support this assumption are scarce because of the contingencies of the pandemic. We aimed to describe the clinical and demographic characteristics and COVID-19 outcomes in patients with cancer. METHODS: In this prospective observational study, all patients with active cancer and presenting to our network of cancer centres were eligible for enrolment into the UK Coronavirus Cancer Monitoring Project (UKCCMP). The UKCCMP is the first COVID-19 clinical registry that enables near real-time reports to frontline doctors about the effects of COVID-19 on patients with cancer. Eligible patients tested positive for severe acute respiratory syndrome coronavirus 2 on RT-PCR assay from a nose or throat swab. We excluded patients with a radiological or clinical diagnosis of COVID-19, without a positive RT-PCR test. The primary endpoint was all-cause mortality, or discharge from hospital, as assessed by the reporting sites during the patient hospital admission. FINDINGS: From March 18, to April 26, 2020, we analysed 800 patients with a diagnosis of cancer and symptomatic COVID-19. 412 (52%) patients had a mild COVID-19 disease course. 226 (28%) patients died and risk of death was significantly associated with advancing patient age (odds ratio 9·42 [95% CI 6·56-10·02]; p<0·0001), being male (1·67 [1·19-2·34]; p=0·003), and the presence of other comorbidities such as hypertension (1·95 [1·36-2·80]; p<0·001) and cardiovascular disease (2·32 [1·47-3·64]). 281 (35%) patients had received cytotoxic chemotherapy within 4 weeks before testing positive for COVID-19. After adjusting for age, gender, and comorbidities, chemotherapy in the past 4 weeks had no significant effect on mortality from COVID-19 disease, when compared with patients with cancer who had not received recent chemotherapy (1·18 [0·81-1·72]; p=0·380). We found no significant effect on mortality for patients with immunotherapy, hormonal therapy, targeted therapy, radiotherapy use within the past 4 weeks. INTERPRETATION: Mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. We are not able to identify evidence that cancer patients on cytotoxic chemotherapy or other anticancer treatment are at an increased risk of mortality from COVID-19 disease compared with those not on active treatment. FUNDING: University of Birmingham, University of Oxford.


Assuntos
Antineoplásicos/uso terapêutico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/mortalidade , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Fatores Etários , Idoso , Betacoronavirus , COVID-19 , Causas de Morte , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/mortalidade , Pandemias , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2 , Fatores Sexuais
12.
Genome Med ; 11(1): 20, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925887

RESUMO

Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Evolução Clonal , Heterogeneidade Genética , Neoplasias/genética , Animais , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Humanos , Neoplasias/sangue , Neoplasias/patologia
13.
Cancer Cell ; 35(3): 441-456.e8, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889380

RESUMO

Undifferentiated sarcomas (USARCs) of adults are diverse, rare, and aggressive soft tissue cancers. Recent sequencing efforts have confirmed that USARCs exhibit one of the highest burdens of structural aberrations across human cancer. Here, we sought to unravel the molecular basis of the structural complexity in USARCs by integrating DNA sequencing, ploidy analysis, gene expression, and methylation profiling. We identified whole genome duplication as a prevalent and pernicious force in USARC tumorigenesis. Using mathematical deconvolution strategies to unravel the complex copy-number profiles and mutational timing models we infer distinct evolutionary pathways of these rare cancers. In addition, 15% of tumors exhibited raised mutational burdens that correlated with gene expression signatures of immune infiltration, and good prognosis.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica/métodos , Sarcoma/genética , Análise de Sequência de DNA/métodos , Evolução Molecular , Duplicação Gênica , Humanos , Mutação , Ploidias , Prognóstico
14.
Clin Cancer Res ; 24(20): 5098-5111, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068707

RESUMO

Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Receptor 1 de Folato/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasia de Células Basais , Interferência de RNA , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Commun ; 9(1): 2150, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858576

RESUMO

The transcription factor FOS has long been implicated in the pathogenesis of bone tumours, following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory mice. However, mutations of FOS have not been found in human bone-forming tumours. Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most common benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immunohistochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations of FOS and FOSB.


Assuntos
Neoplasias Ósseas/genética , Osteoblastoma/genética , Proteínas Proto-Oncogênicas c-fos/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/metabolismo , Criança , Pré-Escolar , Feminino , Rearranjo Gênico , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Osteoblastoma/diagnóstico , Osteoblastoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sequenciamento Completo do Genoma/métodos , Adulto Jovem
16.
Cancer Res ; 77(5): 1127-1141, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096174

RESUMO

IgE antibodies are key mediators of antiparasitic immune responses, but their potential for cancer treatment via antibody-dependent cell-mediated cytotoxicity (ADCC) has been little studied. Recently, tumor antigen-specific IgEs were reported to restrict cancer cell growth by engaging high-affinity Fc receptors on monocytes and macrophages; however, the underlying therapeutic mechanisms were undefined and in vivo proof of concept was limited. Here, an immunocompetent rat model was designed to recapitulate the human IgE-Fcε receptor system for cancer studies. We also generated rat IgE and IgG mAbs specific for the folate receptor (FRα), which is expressed widely on human ovarian tumors, along with a syngeneic rat tumor model expressing human FRα. Compared with IgG, anti-FRα IgE reduced lung metastases. This effect was associated with increased intratumoral infiltration by TNFα+ and CD80+ macrophages plus elevated TNFα and the macrophage chemoattractant MCP-1 in lung bronchoalveolar lavage fluid. Increased levels of TNFα and MCP-1 correlated with IgE-mediated tumor cytotoxicity by human monocytes and with longer patient survival in clinical specimens of ovarian cancer. Monocytes responded to IgE but not IgG exposure by upregulating TNFα, which in turn induced MCP-1 production by monocytes and tumor cells to promote a monocyte chemotactic response. Conversely, blocking TNFα receptor signaling abrogated induction of MCP-1, implicating it in the antitumor effects of IgE. Overall, these findings show how antitumor IgE reprograms monocytes and macrophages in the tumor microenvironment, encouraging the clinical use of IgE antibody technology to attack cancer beyond the present exclusive reliance on IgG. Cancer Res; 77(5); 1127-41. ©2017 AACR.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Receptor 1 de Folato/imunologia , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Receptor 1 de Folato/antagonistas & inibidores , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/biossíntese
17.
Oncotarget ; 7(32): 52553-52574, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27248175

RESUMO

Promising targeted treatments and immunotherapy strategies in oncology and advancements in our understanding of molecular pathways that underpin cancer development have reignited interest in the tumor-associated antigen Folate Receptor alpha (FRα). FRα is a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Its overexpression in tumors such as ovarian, breast and lung cancers, low and restricted distribution in normal tissues, alongside emerging insights into tumor-promoting functions and association of expression with patient prognosis, together render FRα an attractive therapeutic target. In this review, we summarize the role of FRα in cancer development, we consider FRα as a potential diagnostic and prognostic tool, and we discuss different targeted treatment approaches with a specific focus on monoclonal antibodies. Renewed attention to FRα may point to novel individualized treatment approaches to improve the clinical management of patient groups that do not adequately benefit from current conventional therapies.


Assuntos
Receptor 1 de Folato/metabolismo , Neoplasias/metabolismo , Humanos
18.
Front Oncol ; 4: 383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25667918

RESUMO

The incidence of cutaneous melanoma has more than doubled over the last decades making it one of the fastest rising cancers worldwide. Improved awareness and early detection of malignant moles now permit earlier diagnosis aiming to decrease the likelihood of recurrence. However, it is difficult to identify those patients initially diagnosed with localized melanoma who subsequently develop metastatic disease. For this group, prognosis remains poor and clinical outcomes are variable and challenging to predict. Considerable efforts have focused on the search for novel prognostic tools, with numerous markers evaluated in the circulation and in tumor lesions. The most reliable predictors of patient outcome are the clinical and histological features of the primary tumor such as Breslow thickness, ulceration status, and mitotic rate. Elevated serum levels of the enzyme lactate dehydrogenase, likely to indicate active metastatic disease, are also routinely used to monitor patients. The emergence of novel immune and checkpoint antibody treatments for melanoma and increasing appreciation of key roles of the immune system in promoting or halting cancer progression have focused attention to immunological biomarkers. Validation of the most promising of these may have clinical applications in assisting prognosis, assessing endpoints in therapy, and monitoring responses during treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA