Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Immunol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995177

RESUMO

TLRs are the most thoroughly studied group of pattern-recognition receptors that play a central role in innate immunity. Among them, TLR10 (CD290) remains the only TLR family member without a known ligand and clearly defined functions. One major impediment to studying TLR10 is its absence in mice. A recent study on TLR10 knock-in mice demonstrated its intrinsic inhibitory role in B cells, indicating that TLR10 is a potential drug target in autoimmune diseases. In this study, we interrogated the expression and function of TLR10 in human plasmacytoid dendritic cells (pDCs). We have seen that primary human pDCs, B cells, and monocytes constitutively express TLR10. Upon preincubation with an anti-TLR10 Ab, production of cytokines in pDCs was downregulated in response to stimulation with DNA and RNA viruses. Upon further investigation into the possible mechanism, we documented phosphorylation of STAT3 upon Ab-mediated engagement of TLR10. This leads to the induction of inhibitory molecule suppressor of cytokine signaling 3 (SOCS3) expression. We have also documented the inhibition of nuclear translocation of transcription factor IFN regulatory factor 7 (IRF7) in pDCs following TLR10 engagement. Our data provide the (to our knowledge) first evidence that TLR10 is constitutively expressed on the surface of human pDCs and works as a regulator of their innate response. Our findings indicate the potential of harnessing the function of pDCs by Ab-mediated targeting of TLR10 that may open a new therapeutic avenue for autoimmune disorders.

2.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464328

RESUMO

Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.

3.
PNAS Nexus ; 2(11): pgad350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954158

RESUMO

Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.

4.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066223

RESUMO

Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.

6.
J Immunol ; 209(4): 675-683, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35879099

RESUMO

Plasmacytoid dendritic cells (pDCs) have been implicated as having a role in antifungal immunity, but mechanisms of their interaction with fungi and the resulting cellular responses are not well understood. In this study, we identify the direct and indirect biological response of human pDCs to the fungal pathogen Aspergillus fumigatus and characterize the expression and regulation of antifungal receptors on the pDC surface. Results indicate pDCs do not phagocytose Aspergillus conidia, but instead bind hyphal surfaces and undergo activation and maturation via the upregulation of costimulatory and maturation markers. Measuring the expression of C-type lectin receptors dectin-1, dectin-2, dectin-3, and mannose receptor on human pDCs revealed intermediate expression of each receptor compared with monocytes. The specific dectin-1 agonist curdlan induced pDC activation and maturation in a cell-intrinsic and cell-extrinsic manner. The indirect activation of pDCs by curdlan was much stronger than direct stimulation and was mediated through cytokine production by other PBMCs. Overall, our data indicate pDCs express various C-type lectin receptors, recognize and respond to Aspergillus hyphal Ag, and serve as immune enhancers or modulators in the overarching fungal immune response.


Assuntos
Aspergillus fumigatus , Lectinas Tipo C , Humanos , Antifúngicos , Células Dendríticas , Fagocitose
7.
J Immunol Methods ; 499: 113165, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634317

RESUMO

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Teste em Amostras de Sangue Seco , Anticorpos Antivirais/imunologia , Sítios de Ligação , COVID-19/sangue , COVID-19/imunologia , Humanos , Vacinação
8.
medRxiv ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34282427

RESUMO

Monitoring the burden and spread of infection with the new coronavirus SARS-CoV-2, whether within small communities or in large geographical settings, is of paramount importance for public health purposes. Serology, which detects the host antibody response to the infection, is the most appropriate tool for this task, since virus-derived markers are most reliably detected during the acute phase of infection. Here we show that our ELISA protocol, which is based on antibody binding to the Receptor Binding Domain (RBD) of the S1 subunit of the viral Spike protein expressed as a novel fusion protein, detects antibody responses to SARS-CoV-2 infection and COVID-19 vaccination. We also show that our ELISA is accurate and versatile. It compares favorably with commercial assays widely used in clinical practice to determine exposure to SARS-CoV-2. Moreover, our protocol accommodates use of various blood- and non-blood-derived biospecimens, such as breast milk, as well as dried blood obtained with microsampling cartridges that are appropriate for remote collection. As a result, our RBD-based ELISA protocols are well suited for seroepidemiology and other large-scale studies requiring parsimonious sample collection outside of healthcare settings.

9.
Aging Cell ; 20(5): e13344, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33939265

RESUMO

Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second-generation fluorogenic substrate for ß-galactosidase and multi-parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence-associated ß-galactosidase (SA-ßGal) activity with advancing donor age. The greatest age-associated increases were observed in CD8+ T-cell populations, in which the fraction of cells with high SA-ßGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA-ßGal activity, but not those with low SA-ßGal activity, were found to exhibit features of telomere dysfunction-induced senescence and p16-mediated senescence, were impaired in their ability to proliferate, developed in various T-cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/citologia , Senescência Celular/imunologia , beta-Galactosidase/metabolismo , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Citometria de Fluxo , Expressão Gênica , Humanos , Telômero
10.
medRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33880486

RESUMO

Much is to be learned about the interface between immune responses to SARS-CoV-2 infection and vaccination. We monitored immune responses specific to SARS-CoV-2 Spike Receptor-Binding-Domain (RBD) in convalescent individuals for eight months after infection diagnosis and following vaccination. Over time, neutralizing antibody responses, which are predominantly RBD specific, generally decreased, while RBD-specific memory B cells persisted. RBD-specific antibody and B cell responses to vaccination were more vigorous than those elicited by infection in the same subjects or by vaccination in infection-naïve comparators. Notably, the frequencies of double negative B memory cells, which are dysfunctional and potentially pathogenic, increased in the convalescent subjects over time. Unexpectedly, this effect was reversed by vaccination. Our work identifies a novel aspect of immune dysfunction in mild/moderate COVID-19, supports the practice of offering SARS-CoV-2 vaccination regardless of infection history, and provides a potential mechanistic explanation for the vaccination-induced reduction of "Long-COVID" symptoms.

11.
J Leukoc Biol ; 109(2): 299-308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32640499

RESUMO

Plasmacytoid dendritic cells (pDCs) play a crucial role in innate viral immunity as the most potent producers of type I interferons (IFN) in the human body. However, the metabolic regulation of IFN production in such vast quantity remains poorly understood. In this study, AMP-activated protein kinase (AMPK) is strongly implicated as a driver of metabolic reprogramming that the authors and others have observed in pDCs after activation via TLR7/9. Oxygen consumption and mitochondrial membrane potential (MMP) were elevated following stimulation of pDCs with influenza or herpes simplex virus. Blocking these changes using mitochondrial inhibitors abrogated IFN-α production. While it appears that multiple carbon sources can be used by pDCs, blocking pyruvate metabolism had the strongest effect on IFN-α production. Furthermore, we saw no evidence of aerobic glycolysis (AG) during pDC activation and blocking lactate dehydrogenase activity did not inhibit IFN-α. TLR7/9 ligation induces a posttranslational modification in Raptor that is catalyzed by AMPK, and blocking TLR7/9 before virus introduction prevents this change. Finally, it is demonstrated that Dorsomorphin, an AMPK inhibitor, inhibited both IFN-α production and MMP in a dose-dependent manner. Taken together, these data reveal a potential cellular mechanism for the metabolic reprogramming in TLR 7/9-activated pDCs that supports activation and IFN-α production.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Dendríticas/metabolismo , Interferons/biossíntese , Aerobiose/efeitos dos fármacos , Carbono/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Piruvatos/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
J Immunol ; 205(1): 223-236, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32471881

RESUMO

Plasmacytoid dendritic cells (pDCs) are potent producers of type I and type III IFNs and play a major role in antiviral immunity and autoimmune disorders. The innate sensing of nucleic acids remains the major initiating factor for IFN production by pDCs. TLR-mediated sensing of nucleic acids via endosomal pathways has been studied and documented in detail, whereas the sensing of DNA in cytosolic compartment in human pDCs remains relatively unexplored. We now demonstrate the existence and functionality of the components of cytosolic DNA-sensing pathway comprising cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of IFN gene (STING) in human pDCs. cGAS was initially located in the cytosolic compartment of pDCs and time-dependently colocalized with non-CpG double-stranded immunostimulatory DNA (ISD). Following the colocalization of ISD with cGAS, the downstream pathway was triggered as STING disassociated from its location at the endoplasmic reticulum. Upon direct stimulation of pDCs by STING agonist 2'3' cGAMP or dsDNA, pDC-s produced type I, and type III IFN. Moreover, we documented that cGAS-STING-mediated IFN production is mediated by nuclear translocation of IRF3 whereas TLR9-mediated activation occurs through IRF7. Our data also indicate that pDC prestimulation of cGAS-STING dampened the TLR9-mediated IFN production. Furthermore, triggering of cGAS-STING induced expression of SOCS1 and SOCS3 in pDCs, indicating a possible autoinhibitory loop that impedes IFN production by pDCs. Thus, our study indicates that the cGAS-STING pathway exists in parallel to the TLR9-mediated DNA recognition in human pDCs with cross-talk between these two pathways.


Assuntos
Células Dendríticas/imunologia , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Receptor Toll-Like 9/metabolismo , DNA/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Proteínas de Membrana/agonistas , Nucleotídeos Cíclicos/farmacologia , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Células THP-1
13.
Viruses ; 12(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023836

RESUMO

Plasmacytoid dendritic cells (pDCs) are innate immune cells and potent producers of interferon alpha (IFNα). Regulation of pDCs is crucial for prevention of aberrant IFN production. Transcription factor E2-2 (TCF4) regulates pDC development and function, but mechanisms of E2-2 control have not been investigated. We used freshly-isolated human peripheral blood mononuclear cells stimulated with toll-like receptor 7, 9, and 4 agonists to determine which factors regulate E2-2. After activation, pDCs decreased E2-2 expression. E2-2 downregulation occurred during the upregulation of costimulatory markers, after maximal IFN production. In congruence with previous reports in mice, we found that primary human pDCs that maintained high E2-2 levels produced more IFN, and had less expression of costimulatory markers. Stimulation of purified pDCs did not lead to E2-2 downregulation; therefore, we investigated if cytokine signaling regulates E2-2 expression. We found that tumor necrosis factor alpha (TNFα) produced by monocytes caused decreased E2-2 expression. All together, we established that primary human pDCs decrease E2-2 in response to TNFα and E2-2 low pDCs produce less IFN but exhibit more costimulatory molecules. Altered expression of E2-2 may represent a mechanism to attenuate IFN production and increase activation of the adaptive immune compartment.


Assuntos
Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Leucócitos Mononucleares/imunologia , Fator de Transcrição 4/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células Cultivadas , Regulação para Baixo , Humanos , Imidazóis/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Receptores Toll-Like/agonistas
15.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669251

RESUMO

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossíntese
16.
J Immunol ; 200(1): 186-195, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180487

RESUMO

Plasmacytoid dendritic cells (pDCs) are the major producers of IFN-α, an antiviral cytokine involved in immunomodulation and control of HIV type 1 replication, whereas Toxoplasma gondii is a life-threatening opportunistic infection in AIDS patients. During infection with HIV type 1, human pDCs decrease in circulation and remaining pDC produce lower amounts of IFN-α in response to viral stimulation. In this study, we investigated the impact of coinfection with T. gondii on the innate virus-directed responses of human pDCs. Using intracellular flow cytometry and fluorescence microscopy, we determined that T. gondii invaded but did not induce IFN-α or TNF-α in human pDC. However, T. gondii inhibited IFN-α and TNF-α produced in response to HSV and HIV, thus functionally inactivating pDC. IFN-α production was inhibited only in cells infected by T. gondii, which inhibited neither uptake of GFP-HSV nor localization of TLR9 in CD71+ endosomes, directing us to investigate downstream events. Using imaging flow cytometry, we found that both T. gondii and IL-10 inhibited virus-induced nuclear translocation, but not phosphorylation, of IFN response factor 7. Blockade of IFN response factor 7 nuclear translocation and inhibition of the IFN-α response was partially reversed by a deficiency in the T. gondii-derived ROP16 kinase, known to directly phosphorylate STAT3, a critical mediator of IL-10's anti-inflammatory effects. Taken together, our results indicate that T. gondii suppresses pDC activation by mimicking IL-10's regulatory effects through an ROP16 kinase-dependent mechanism. Our findings further imply a convergent mechanism of inhibition of TLR signaling by T. gondii and IL-10 and suggest potential negative consequences of HIV/T. gondii coinfection.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucina-10/metabolismo , Infecções Oportunistas/imunologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Diferenciação Celular , Células Cultivadas , Coinfecção , Células Dendríticas/parasitologia , Humanos , Imunidade Inata , Imunomodulação , Fator Regulador 7 de Interferon/metabolismo , Interferon-alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Front Immunol ; 8: 1705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255464

RESUMO

Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body's most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.

19.
J Acquir Immune Defic Syndr ; 69(5): 509-18, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26167616

RESUMO

BACKGROUND: CD4 T cells are crucial for the establishment and dissemination of HIV in mucosal tissues during acute infection. Studies indicate that integrin α4ß7 CD4 T cells are preferentially infected by HIV in vitro and during acute SIV infection. The integrin α4ß7 is thought to promote HIV capture by target cells; however, the role of integrin α4ß7 in HIV transmission remains controversial. In this study, we characterized immune phenotypes of human cervical T cells and examined HIV preference in integrin α4ß7 CD4 T cells. In vitro all-trans retinoic acid-differentiated peripheral CD4 T cells (atRA-differentiated cells) were included as a comparison. RESULTS: In both peripheral and cervical cells, the majority of HIV p24 cells were activated CD4 T cells expressing integrin α4ß7. Among infected atRA-differentiated cells, the frequency of CCR5 expression was higher in HIV p24 cells than in HIV p24 cells; no such difference was observed in cervical cells. Neither the cyclic hexapeptide CWLDVC nor a monoclonal antibody against integrin α4ß7 blocked HIV attachment or gp120 binding to target cells regardless of the presence of CD4, indicating that integrin α4ß7 did not facilitate HIV capture by target cells. CONCLUSIONS: Integrin α4ß7 expression increases HIV susceptibility, but the mechanism is not through promoting HIV binding to target cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Colo do Útero/citologia , Regulação da Expressão Gênica/imunologia , HIV-1/fisiologia , Integrinas/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Feminino , Humanos , Imunofenotipagem/métodos , Integrinas/genética , Tretinoína/farmacologia , Ligação Viral
20.
J Immunol ; 189(6): 2735-45, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22891284

RESUMO

Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and lymphoid tissues. pDC are considered to be "professional" type I IFN-producing cells and produce 10- to 100-fold more IFN-α than other cell types in response to enveloped viruses or synthetic TLR7 and TLR9 agonists. In this study, purified pDC were found to express high levels of IFN-λ receptor mRNA, as well as cell-surface IFN-λ receptor. We have developed intracellular flow cytometry assays using Abs to IFN-λ1/3 or -λ2 to assess the expression of IFN-λ proteins by pDC. We observed that a subset of human pDC expresses only intracellular IFN-α, whereas another subset produces both IFN-α and IFN-λ after stimulation with virus or the TLR9 agonist, CpG A; the cells that coexpressed IFN-α and IFN-λ were the cells with the highest levels of IFN-α expression. Ab cross-linking of CD4 or CD303 molecules on pDC inhibited both HSV-induced IFN-λ and IFN-α production. Like the production of IFN-α, the HSV-induced IFN-λ production in pDC was mediated through TLR9 and independent of virus replication. Exogenous IFN-λ treatment of pDC resulted in increased virus-induced expression of both IFN-α and IFN-λ. In addition, both exogenous IFN-λ and -α inhibited dexamethasone-induced apoptosis of pDC. We conclude that pDC are major producers of IFN-λ1 and -λ2 in response to viral stimulation and also express functional receptors for this cytokine. Thus, IFN-λ can serve as an autocrine signal to strengthen the antiviral response of pDC by increasing IFN-α and IFN-λ production, resulting in prolonged pDC survival.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucinas/biossíntese , Interleucinas/fisiologia , Células Cultivadas , Células Dendríticas/virologia , Células HEK293 , Células Hep G2 , Herpesvirus Humano 1/imunologia , Humanos , Vírus da Influenza A/imunologia , Interferons , Interleucinas/genética , Receptores de Citocinas/metabolismo , Vírus Sendai/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA