Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 7(1): 60, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225482

RESUMO

BACKGROUND: Although patient-sourced cardiac stem cells repair damaged myocardium, the extent to which medical co-morbidities influence cardiac-derived cell products is uncertain. Therefore, we investigated the influence of atherosclerotic risk factors on the regenerative performance of human cardiac explant-derived cells (EDCs). METHODS: In this study, the Long Term Stratification for survivors of acute coronary syndromes model was used to quantify the burden of cardiovascular risk factors within a group of patients with established atherosclerosis. EDCs were cultured from human atrial appendages and injected into immunodeficient mice 7 days post-left coronary ligation. Cytokine arrays and enzyme linked immunoassays were used to determine the release of cytokines by EDCs in vitro, and echocardiography was used to determine regenerative capabilities in vivo. RESULTS: EDCs sourced from patients with more cardiovascular risk factors demonstrated a negative correlation with production of pro-healing cytokines (such as stromal cell derived factor 1α) and exosomes which had negative effects on the promotion of angiogenesis and chemotaxis. Reductions in exosomes and pro-healing cytokines with accumulating medical co-morbidities were associated with increases in production of the pro-inflammatory cytokine interleukin-6 (IL-6) by EDCs. Increased patient co-morbidities were also correlated with significant attenuation in improvements of left ventricular ejection fraction. CONCLUSIONS: The regenerative performance of the earliest precursor cell population cultured from human explant tissue declines with accumulating medical co-morbidities. This effect is associated with diminished production of pro-cardiogenic cytokines and exosomes while IL-6 is markedly increased. Predictors of cardiac events demonstrated a lower capacity to support angiogenesis and repair injured myocardium in a mouse model of myocardial infarction.


Assuntos
Síndrome Coronariana Aguda/patologia , Aterosclerose/patologia , Estenose Coronária/patologia , Infarto do Miocárdio/patologia , Transplante de Células-Tronco , Síndrome Coronariana Aguda/metabolismo , Animais , Aterosclerose/metabolismo , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/metabolismo , Quimiotaxia , Comorbidade , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Exossomos/transplante , Expressão Gênica , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Neovascularização Fisiológica , Cultura Primária de Células , Células-Tronco/metabolismo , Células-Tronco/patologia , Volume Sistólico , Função Ventricular Esquerda
2.
Cell Cycle ; 14(18): 2938-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208522

RESUMO

Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated ß-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.


Assuntos
Senescência Celular , Glioblastoma/patologia , Isoenzimas/fisiologia , Mitose/fisiologia , Proteína Quinase C/fisiologia , Biomarcadores/metabolismo , Pontos de Checagem do Ciclo Celular , Centrossomo/ultraestrutura , Dano ao DNA , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Poliploidia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA