RESUMO
The Human Exposome Project aims to revolutionize our understanding of how environmental exposures affect human health by systematically cataloging and analyzing the myriad exposures individuals encounter throughout their lives. This initiative draws a parallel with the Human Genome Project, expanding the focus from genetic factors to the dynamic and complex nature of environ-mental interactions. The project leverages advanced methodologies such as omics technologies, biomonitoring, microphysiological systems (MPS), and artificial intelligence (AI), forming the foun-dation of exposome intelligence (EI) to integrate and interpret vast datasets. Key objectives include identifying exposure-disease links, prioritizing hazardous chemicals, enhancing public health and regulatory policies, and reducing reliance on animal testing. The Implementation Moonshot Project for Alternative Chemical Testing (IMPACT), spearheaded by the Center for Alternatives to Animal Testing (CAAT), is a new element in this endeavor, driving the creation of a public-private part-nership toward a Human Exposome Project with a stakeholder forum in 2025. Establishing robust infrastructure, fostering interdisciplinary collaborations, and ensuring quality assurance through sys-tematic reviews and evidence-based frameworks are crucial for the project's success. The expected outcomes promise transformative advancements in precision public health, disease prevention, and a more ethical approach to toxicology. This paper outlines the strategic imperatives, challenges, and opportunities that lie ahead, calling on stakeholders to support and participate in this landmark initiative for a healthier, more sustainable future.
This paper outlines a proposal for a "Human Exposome Project" to comprehensively study how environmental exposures affect human health throughout our lives. The exposome refers to all the environmental factors we are exposed to, from chemicals to diet to stress. The project aims to use advanced technologies like artificial intelligence, lab-grown mini-organs, and detailed biological measurements to map how different exposures impact our health. This could help identify causes of diseases and guide better prevention strategies. Key goals include finding links between specific exposures and health problems, determining which chemicals are most concerning, improving public health policies, and reducing animal testing. The project requires collaboration between researchers, government agencies, companies, and others. While ambitious, this effort could revolutionize our understanding of environmental health risks. The potential benefits for improving health and preventing disease make this an important endeavor to a precise and comprehensive approach to public health and disease prevention.