Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Commun ; 6(2): fcae071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495305

RESUMO

Enlarged perivascular spaces have been previously reported in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, but their significance and pathophysiology remains unclear. We investigated associations of white matter enlarged perivascular spaces with classical imaging measures, cognitive measures and plasma proteins to better understand what enlarged perivascular spaces represent in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and whether radiographic measures of enlarged perivascular spaces would be of value in future therapeutic discovery studies for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Twenty-four individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and 24 age- and sex-matched controls were included. Disease status was determined based on the presence of NOTCH3 mutation. Brain imaging measures of white matter hyperintensity, brain parenchymal fraction, white matter enlarged perivascular space volumes, clinical and cognitive measures as well as plasma proteomics were used in models. White matter enlarged perivascular space volumes were calculated via a novel, semiautomated pipeline, and levels of 7363 proteins were quantified in plasma using the SomaScan assay. The relationship of enlarged perivascular spaces with global burden of white matter hyperintensity, brain atrophy, functional status, neurocognitive measures and plasma proteins was modelled with linear regression models. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and control groups did not exhibit differences in mean enlarged perivascular space volumes. However, increased enlarged perivascular space volumes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.05), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.49, P = 0.04) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.10). In interaction term models, the interaction term between cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease status and enlarged perivascular space volume was associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.02), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.52, P = 0.02), Mini-Mental State Examination score (ß = -1.49, P = 0.03) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.07). Proteins positively associated with enlarged perivascular space volumes were found to be related to leukocyte migration and inflammation, while negatively associated proteins were related to lipid metabolism. Two central hub proteins were identified in protein networks associated with enlarged perivascular space volumes: CXC motif chemokine ligand 8/interleukin-8 and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. The levels of CXC motif chemokine ligand 8/interleukin-8 were also associated with increased white matter hyperintensity volume (ß = 42.86, P = 0.03), and levels of C-C motif chemokine ligand 2/monocyte chemoattractant protein 1 were further associated with decreased brain parenchymal fraction (ß = -0.0007, P < 0.01) and Mini-Mental State Examination score (ß = -0.02, P < 0.01) and increased Trail Making Test B completion time (ß = 0.76, P < 0.01). No proteins were associated with all three studied imaging measures of pathology (brain parenchymal fraction, enlarged perivascular spaces, white matter hyperintensity). Based on associations uncovered between enlarged perivascular space volumes and cognitive functions, imaging and plasma proteins, we conclude that white matter enlarged perivascular space volumes may capture pathologies contributing to chronic brain dysfunction and degeneration in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

2.
Mol Ther Nucleic Acids ; 33: 941-959, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37701067

RESUMO

The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.

3.
Mol Ther Nucleic Acids ; 29: 643-655, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36090747

RESUMO

Macrophages are plastic cells playing a crucial role in innate immunity. While fundamental in responding to infections, when persistently maintained in a pro-inflammatory state they can initiate and sustain inflammatory diseases. Therefore, a strategy that reprograms pro-inflammatory macrophages toward an anti-inflammatory phenotype could hold therapeutic potential in that context. We have recently shown that arginase 2 (Arg2), a mitochondrial enzyme involved in arginine metabolism, promotes the resolution of inflammation in macrophages and it is targeted by miR-155. Here, we designed and tested a target site blocker (TSB) that specifically interferes and blocks the interaction between miR-155 and Arg2 mRNA, leading to Arg2 increased expression and activity. In bone marrow-derived macrophages transfected with Arg2 TSB (in the presence or absence of the pro-inflammatory stimulus LPS), we observed an overall shift of the polarization status of macrophages toward an anti-inflammatory phenotype, as shown by significant changes in surface markers (CD80 and CD71), metabolic parameters (mitochondrial oxidative phosphorylation) and cytokines secretion (IL-1ß, IL-6, and TNF). Moreover, in an in vivo model of LPS-induced acute inflammation, intraperitoneal administration of Arg2 TSB led to an overall decrease in systemic levels of pro-inflammatory cytokines. Overall, this proof-of-concept strategy represent a promising approach to modulating macrophage phenotype.

4.
Sci Rep ; 12(1): 10851, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761023

RESUMO

Extracellular vesicles (EVs) are nanoparticles found in all biological fluids, capable of transporting biological material around the body. Extensive research into the physiological role of EVs has led to the development of the Minimal Information for Studies of Extracellular Vesicles (MISEV) framework in 2018. This framework guides the standardisation of protocols in the EV field. To date, the focus has been on EVs of human origin. As comparative medicine progresses, there has been a drive to study similarities between diseases in humans and animals. To successfully research EVs in felines, we must validate the application of the MISEV guidelines in this group. EVs were isolated from the plasma of healthy humans and felines. EV characterisation was carried out according to the MISEV guidelines. Human and feline plasma showed a similar concentration of EVs, comparable expression of known EV markers and analogous particle to protein ratios. Mass spectrometry analyses showed that the proteomic signature of EVs from humans and felines were similar. Asymmetrical flow field flow fractionation, showed two distinct subpopulations of EVs isolated from human plasma, whereas only one subpopulation was isolated from feline plasma. Metabolomic profiling showed similar profiles for humans and felines. In conclusion, isolation, and characterisation of EVs from humans and felines show that MISEV2018 guidelines may also be applied to felines. Potential comparative medicine studies of EVs may provide a model for studying naturally occurring diseases in both humans and felines.


Assuntos
Vesículas Extracelulares , Fracionamento por Campo e Fluxo , Animais , Transporte Biológico , Gatos , Humanos , Plasma , Proteômica
5.
J Immunol ; 208(10): 2363-2375, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35477686

RESUMO

CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.


Assuntos
Dióxido de Carbono , Anidrase Carbônica II , Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia/enzimologia , Hipercapnia/metabolismo , Isoenzimas
6.
J Extracell Vesicles ; 10(6): 12084, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33936566

RESUMO

Extracellular vesicles (EVs) are emerging as key players in different stages of atherosclerosis. Here we provide evidence that EVs released by mixed aggregates of monocytes and platelets in response to TNF-α display pro-inflammatory actions on endothelial cells and atherosclerotic plaques. Tempering platelet activation with Iloprost, Aspirin or a P2Y12 inhibitor impacted quantity and phenotype of EV produced. Proteomics of EVs from cells activated with TNF-α alone or in the presence of Iloprost revealed a distinct composition, with interesting hits like annexin-A1 and gelsolin. When added to human atherosclerotic plaque explants, EVs from TNF-α stimulated monocytes augmented release of cytokines. In contrast, EVs generated by TNF-α together with Iloprost produced minimal plaque activation. Notably, patients with coronary artery disease that required percutaneous coronary intervention had elevated plasma numbers of monocyte, platelet as well as double positive EV subsets. In conclusion, EVs released following monocyte/platelet activation may play a potential role in the development and progression of atherosclerosis. Whereas attenuating platelet activation modifies EV composition released from monocyte/platelet aggregates, curbing their pro-inflammatory actions may offer therapeutic avenues for the treatment of atherosclerosis.


Assuntos
Vesículas Extracelulares/fisiologia , Monócitos/fisiologia , Placa Aterosclerótica/fisiopatologia , Agregação Plaquetária/fisiologia , Aspirina/farmacologia , Aterosclerose/fisiopatologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Citocinas , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Monócitos/citologia , Ativação Plaquetária/efeitos dos fármacos , Fator de Necrose Tumoral alfa
7.
Front Immunol ; 11: 576516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391256

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD). Methods: miR-155 expression was quantified in aortae from ApoE-/- mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD. Results: Here, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs. Conclusion: miR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.


Assuntos
Síndrome Coronariana Aguda/urina , Doenças da Aorta/urina , Aterosclerose/urina , Doenças das Artérias Carótidas/metabolismo , Doença da Artéria Coronariana/urina , Vesículas Extracelulares/metabolismo , MicroRNAs/urina , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/genética , Idoso , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/urina , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1
8.
FASEB J ; 33(10): 11006-11020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284764

RESUMO

Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis. Apolipoprotein E knockout (ApoE-/-) mice were fed a high-fat (60%) high-cholesterol (1%) diet (HFHCD) for 2 wk, followed by 6-wk 1% CLA 80:20 supplementation to investigate disease progression. Simultaneously, ApoE-/- mice were fed a 12-wk HFHCD with/without CLA for the final 4 wk to investigate regression. Aortic lesions were quantified by en face staining. Proteomic analysis, real-time quantitative PCR and flow cytometry were used to interrogate monocyte/macrophage phenotypes. CLA supplementation inhibited atherosclerosis progression coincident with decreased proinflammatory and increased anti-inflammatory macrophages. However, CLA-induced regression was associated with increased proinflammatory monocytes resulting in increased proresolving M2 bone marrow-derived macrophages, splenic macrophages, and dendritic cells in lesion-draining lymph nodes. Proteomic analysis confirmed regulation of a proinflammatory bone marrow response, which was abolished upon macrophage differentiation. Thus, in attenuation and regression of atherosclerosis, regardless of the monocyte signature, during monocyte to macrophage differentiation, proresolving macrophages prevail, mediating vascular repair. This study provides novel mechanistic insight into the monocyte/macrophage phenotypes in halted atherosclerosis progression and regression of atherosclerosis.-Bruen, R., Curley, S., Kajani, S., Lynch, G., O'Reilly, M. E., Dillon, E. T., Fitzsimons, S., Mthunzi, L., McGillicuddy, F. C., Belton, O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Diferenciação Celular , Ácidos Linoleicos Conjugados/farmacologia , Fenótipo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ácidos Linoleicos Conjugados/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/efeitos dos fármacos , Células Precursoras de Monócitos e Macrófagos/metabolismo , Proteoma/genética , Proteoma/metabolismo
9.
Front Pharmacol ; 10: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139076

RESUMO

Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.

10.
Schizophr Res ; 209: 141-147, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31080155

RESUMO

Apolipoproteins, which play important roles in lipid metabolism, innate immunity and synaptic signalling, have been implicated in first episode psychosis and schizophrenia. This is the first study to investigate plasma apolipoprotein expression in children with psychotic experiences that persist into adulthood. Here, using semi-targeted proteomic analysis we compared plasma apolipoprotein expression levels in age 12 subjects who reported psychotic experiences at both age 12 and age 18 (n = 37) with age-matched subjects who only experienced psychotic experiences (PEs) at age 12 (n = 38). Participants were recruited from the UK Avon Longitudinal Study of Parents and Children (ALSPAC) cohort who participated in psychiatric assessment interviews at ages 12 and 18. We identified apoE, a protein with significant regulatory activity on cholesterol metabolism in the brain, to be significantly up regulated (p < 0.003) in those with persistent psychotic experiences. We confirmed this finding in these samples using ELISA. Our findings indicate elevated plasma apoE in age 12 children who experience PEs is associated with persistence psychotic experiences.


Assuntos
Apolipoproteínas E/sangue , Delusões/sangue , Alucinações/sangue , Adolescente , Apolipoproteínas/sangue , Criança , Cromatografia Líquida de Alta Pressão , Delusões/fisiopatologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Alucinações/fisiopatologia , Humanos , Masculino , Prognóstico , Proteômica
11.
Br J Clin Pharmacol ; 83(1): 46-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037767

RESUMO

Atherosclerosis, the underlying cause of heart attack and strokes, is a progressive dyslipidaemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The most predominant isomers in ruminant fats are cis-9, trans-11 CLA (c9,t11-CLA), which accounts for more than 80% of CLA isomers in dairy products and trans-10, cis-12 CLA (t10,c12-CLA). Dietary administration of a blend of the two most abundant isomers of CLA has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis. Studies investigating the mechanisms involved in CLA-induced atheroprotective effects are continually emerging. The purpose of this review is to discuss comprehensively the effects of CLA on monocyte/macrophage function in atherosclerosis and to identify possible mechanisms through which CLA mediates its atheroprotective effects.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Linoleicos Conjugados/uso terapêutico , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Citocinas/sangue , Suplementos Nutricionais , Humanos , Ácidos Linoleicos Conjugados/química , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA