Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18462, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576327

RESUMO

Abnormal venous atrial (VA) connections present a congenital heart disease (CHD) challenge for pediatric cardiologists. Fully anatomical evaluation is very difficult in prenatal and perinatal follow-up, but it has a profound impact on surgical correction and outcome. The echocardiogram is first-line imaging and represents the gold standard tool for simple abnormal VA connection. CT and MRI are mandatory for more complex heart disease and "nightmare cases". 3D post-processing of volumetric CT and MRI acquisition helps to clarify anatomical relationships and allows for the creation of 3D printing models that can become crucial in customizing surgical strategy. Our article describes a ten-year (2013-2022) tertiary referral CHD center of abnormal AV connections investigated with CT and MRI, illustrating most of these complex diseases with the help of volume rendering (VR) or multiplanar reconstructions (MPR). The nightmarish cases will also be addressed due to the complex cardiovascular arrangement that requires a challenging surgical solution for correction along with the post-surgical complications.

2.
Oper Neurosurg (Hagerstown) ; 20(2): 151-163, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33035343

RESUMO

BACKGROUND: Extent of tumor resection (EOTR) in glioblastoma surgery plays an important role in improving survival. OBJECTIVE: To analyze the efficacy, safety and reliability of fluid-attenuated inversion-recovery (FLAIR) magnetic resonance (MR) images used to guide glioblastoma resection (FLAIRectomy) and to volumetrically measure postoperative EOTR, which was correlated with clinical outcome and survival. METHODS: A total of 68 glioblastoma patients (29 males, mean age 65.8) were prospectively enrolled. Hyperintense areas on FLAIR images, surrounding gadolinium-enhancing tissue on T1-weighted MR images, were screened for signal changes suggesting tumor infiltration and evaluated for supramaximal resection. The surgical protocol included 5-aminolevulinic acid (5-ALA) fluorescence, neuromonitoring, and intraoperative imaging tools. 5-ALA fluorescence intensity was analyzed and matched with the different sites on navigated MR, both on postcontrast T1-weighted and FLAIR images. Volumetric evaluation of EOTR on T1-weighted and FLAIR sequences was compared. RESULTS: FLAIR MR volumetric evaluation documented larger tumor volume than that assessed on contrast-enhancing T1 MR (72.6 vs 54.9 cc); residual tumor was seen in 43 patients; postcontrast T1 MR volumetric analysis showed complete resection in 64 cases. O6-methylguanine-DNA methyltransferase promoter was methylated in 8/68 (11.7%) cases; wild type Isocytrate Dehydrogenase-1 (IDH-1) was found in 66/68 patients. Progression free survival and overall survival (PFS and OS) were 17.43 and 25.11 mo, respectively. Multiple regression analysis showed a significant correlation between EOTR based on FLAIR, PFS (R2 = 0.46), and OS (R2 = 0.68). CONCLUSION: EOTR based on FLAIR and 5-ALA fluorescence is feasible. Safety of resection relies on the use of neuromonitoring and intraoperative multimodal imaging tools. FLAIR-based EOTR appears to be a stronger survival predictor compared to gadolinium-enhancing, T1-based resection.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
J Neurosurg Sci ; 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298506

RESUMO

BACKGROUND: Brain tumor surgery is routinely supported by several intraoperative techniques, such as fluorescence, brain mapping and neuronavigation, which are often used independently. Efficacy of navigation is limited by the brain-shift phenomenon, particularly in cases of large or deep-sited lesions. Intraoperative imaging was introduced also to update neuronavigation data, to try and solve the brain-shift phenomenon-related pitfalls and increase overall safety. Nevertheless, each intraoperative imaging modality has some intrinsic limitations and technical shortcomings, making its clinical use challenging. We used a multimodal intraoperative imaging protocol to update neuronavigation, based on the combination of intraoperative Ultrasound (i-US) and intraoperative Computed Tomography (i-CT) integrated with 5-ALA fluorescence and neuromonitoring-guided resection. METHODS: This is a pilot study on 52 patients (29 men), including four children, with a mean age of 57.67 years, suffering from brain low- (10 patients) or high-grade (34 patients) glioma or metastasis (8 patients), prospectively and consecutively enrolled. They underwent 5-ALA fluorescence-guided microsurgical tumor resection and neuromonitoring was used in cases of lesions located in eloquent areas, according to pre-operative clinical and neuroradiological features. Navigated B-mode ultrasound acquisition was carried out after dural opening to identify the lesion. After tumor resection, i-US was used to identify residual tumor. Following further tumor resection or in cases of unclear US images, post-contrast i-CT was performed to detect and localize small tumor remnants and to allow further correction for brain shift. A final i-US check was performed to verify the completeness of resection. Clinical evaluation was based on comparison of pre- and post-operative Karnofsky Performance Score (KPS) and assessment of Overall Survival (OS) and Progression Free Survival (PFS). Extent of tumor resection (EOTR) was evaluated by volumetric post-operative Magnetic Resonance performed within 48 h after surgery. RESULTS: Forty-one of the 52 (78.8%) patients were alive and still under follow-up in December 2017. 5-ALA was strongly or vaguely positive in 45 cases (86.5%). Seven lesions (4 low-grade glioma, 1 high-grade glioma and 2 metastases) were not fluorescent. i-US visualized residual tumor after resection of all fluorescent or pathological tissue in 22 cases (42.3%). After i-US guided resection, i-CT documented the presence of further residual tumor in 11 cases (21.1%). Mean EOTR was 98.79% in the low-grade gliomas group, 99.84% in the high-grade gliomas group and 100% in the metastases group. KPS changed from 77.88, pre-operatively, to 72.5, post-operatively. At the last follow-up, mean KPS was 84.23. CONCLUSIONS: The combination of different intraoperative imaging modalities may increase brain tumor safety and extent of resection. In particular, i-US seems to be highly sensitive to detect residual tumors, but it may generate false positives due to artifacts. Conversely, i-CT is more specific to localize remnants, allowing a more reliable updating of navigation data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA