Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892411

RESUMO

Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.


Assuntos
Neoplasias da Mama , Linfócitos do Interstício Tumoral , Células Supressoras Mieloides , Metástase Neoplásica , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Feminino , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T/imunologia , Animais
3.
Front Oncol ; 14: 1339584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371626

RESUMO

Rituximab is a commonly used chemotherapeutic drug for patients with aggressive lymphomas, such as non-Hodgkin's lymphoma (NHL). Currently, the combination of Rituximab and chemotherapy (R-CHOP) stands as the most prevalent first-line therapy for NHL. Nevertheless, the development of new therapeutic approaches remains imperative. An increasing body of evidence highlights a novel role for IBTK in tumorigenesis and cancer growth. In this study, we aim to broaden our understanding of IBTK's function in B-lymphoma, with a particular focus on its impact on the expression of the oncogene MYC. Here, we assessed the effects of combining Rituximab with IBTK silencing on cell viability through cell cycle analysis and Annexin V assays in vitro. Furthermore, we leveraged the transplantability of Eµ-myc lymphomas to investigate whether the inhibition of IBTK could elicit anti-tumor effects in the treatment of lymphomas in vivo. Our data suggests that IBTK silencing may serve as an effective anti-tumor agent for aggressive B-Lymphomas, underscoring its role in promoting apoptosis when used in combination with Rituximab, both in in vitro and in vivo settings.

4.
Cells ; 12(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37048151

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Peptídeos Cíclicos/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/metabolismo
5.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35921220

RESUMO

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Assuntos
Hipertensão , MicroRNAs , Animais , Humanos , Ratos , Bicarbonatos , Hipertensão Essencial/metabolismo , Hipertensão/metabolismo , Medula Renal , MicroRNAs/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo
6.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430709

RESUMO

STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of ß2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.


Assuntos
Apresentação de Antígeno , Macrófagos , Animais , Camundongos , Macrófagos/metabolismo , Transdução de Sinais , Imunidade Inata , Antígenos de Histocompatibilidade , Proteínas de Membrana/metabolismo
7.
Cancers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077709

RESUMO

Thyroid cancer is the most common type of endocrine cancer, and its prevalence continue to rise. Non-metastatic thyroid cancer patients are successfully treated. However, looking for new therapeutic strategies is of great importance for metastatic thyroid cancers that still lead to death. With respect to this, the tumor microenvironment (TME), which plays a key role in tumor progression, should be considered as a new promising therapeutic target to hamper thyroid cancer progression. Indeed, thyroid tumors consist of cancer cells and a heterogeneous and ever-changing niche, represented by the TME, which contributes to establishing most of the features of cancer cells. The TME consists of extracellular matrix (ECM) molecules, soluble factors, metabolites, blood and lymphatic tumor vessels and several stromal cell types that, by interacting with each other and with tumor cells, affect TME remodeling, cancer growth and progression. Among the thyroid TME components, cancer-associated fibroblasts (CAFs) have gained more attention in the last years. Indeed, recent important evidence showed that thyroid CAFs strongly sustain thyroid cancer growth and progression by producing soluble factors and ECM proteins, which, in turn, deeply affect thyroid cancer cell behavior and aggressiveness. Hence, in this article, we describe the thyroid TME, focusing on the desmoplastic stromal reaction, which is a powerful indicator of thyroid cancer progression and an invasive growth pattern. In addition, we discuss the origins and features of the thyroid CAFs, their influence on thyroid cancer growth and progression, their role in remodeling the ECM and their immune-modulating functions. We finally debate therapeutic perspectives targeting CAFs.

8.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743318

RESUMO

Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Inflamação/patologia , Células Estromais/metabolismo , Microambiente Tumoral
10.
Biomedicines ; 10(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35327406

RESUMO

Chronic Lymphocytic Leukemia (CLL) is a heterogeneous disease characterized by variable clinical courses among different patients. This notion was supported by the possible coexistence of two or more independent CLL clones within the same patients, identified by the characterization of the B cell receptor immunoglobulin (BcR IG) idiotypic sequence. By using the antigen-binding site of the BcR IG as bait, the identification and isolation of aggressive and drug-resistance leukemic B-cell clones could allow a deeper biological and molecular investigation. Indeed, by the screening of phage display libraries, we previously selected a peptide binder of the idiotypic region of CLL BCR IGs expressing the unmutated rearrangement IGHV1-69 and used it as a probe to perform a peptide-based cell sorting by flow cytometry in peripheral blood samples from patients with CLL. Since the IGHV1-69 clones persisted during the follow-up time in both patients, we explored the possibility of these clones having acquired an evolutive advantage compared to the other coexisting clones in terms of a higher expression of genes involved in the survival and apoptosis escape processes. To this end, we studied the expression patterns of a panel of genes involved in apoptosis regulation and in NF-kB-dependent pro-survival signals by comparative qRT-PCR assays. According to the results, IGHV1-69 clones showed a higher expression of pro-survival and anti-apoptotic genes as compared to the other CLL clones with different immunogenetic characteristics. Moreover, these IGHV1-69 clones did not carry any characteristic genetic lesions, indicating the relevance of our approach in performing a comprehensive molecular characterization of single tumor clones, as well as for designing new personalized therapeutic approaches for the most aggressive and persistent tumor clones.

11.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216159

RESUMO

The IBTK gene encodes the IBtkα protein that is a substrate receptor of E3 ubiquitin ligase, Cullin 3. We have previously reported the pro-tumorigenic activity of Ibtk in MYC-dependent B-lymphomagenesis observed in Eµ-myc transgenic mice. Here, we provide mechanistic evidence of the functional interplay between IBtkα and MYC. We show that IBtkα, albeit indirectly, activates the ß-catenin-dependent transcription of the MYC gene. Of course, IBtkα associates with GSK3ß and promotes its ubiquitylation, which is associated with proteasomal degradation. This event increases the protein level of ß-catenin, a substrate of GSK3ß, and results in the transcriptional activation of the MYC and CCND1 target genes of ß-catenin, which are involved in the control of cell division and apoptosis. In particular, we found that in Burkitt's lymphoma cells, IBtkα silencing triggered the downregulation of both MYC mRNA and protein expression, as well as a strong decrease of cell survival, mainly through the induction of apoptotic events, as assessed by using flow cytometry-based cell cycle and apoptosis analysis. Collectively, our results shed further light on the complex puzzle of IBtkα interactome and highlight IBtkα as a potential novel therapeutic target to be employed in the strategy for personalized therapy of B cell lymphoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Linfoma de Células B/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ciclina D1/metabolismo , Células HEK293 , Humanos , Linfoma de Células B/genética , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismo
12.
Nanoscale ; 14(8): 2998-3003, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35141731

RESUMO

We present an innovative approach allowing the identification, isolation, and molecular characterization of disease-related exosomes based on their different antigenic reactivities. The designed strategy could be immediately translated into any disease in which exosomes are involved. The identification of specific markers and their subsequent association with exosome subtypes, together with the possibility to engineer target-guided exosome-like particles, could represent the key for the effective adoption of exosomes in clinical practice.


Assuntos
Bacteriófagos , Exossomos , Bacteriófagos/genética , Biomarcadores
13.
Front Cell Dev Biol ; 9: 730726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604232

RESUMO

Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.

14.
Microorganisms ; 9(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34442751

RESUMO

The increasing incidence of antimicrobial resistance (AMR) is a major global challenge. Routine techniques for molecular AMR marker detection are largely based on low-plex PCR and detect dozens to hundreds of AMR markers. To allow for comprehensive and sensitive profiling of AMR markers, we developed a capture-based next generation sequencing (NGS) workflow featuring a novel AMR marker panel based on the curated AMR database ARESdb. Our primary objective was to compare the sensitivity of target enrichment-based AMR marker detection to metagenomics sequencing. Therefore, we determined the limit of detection (LOD) in synovial fluid and urine samples across four key pathogens. We further demonstrated proof-of-concept for AMR marker profiling from septic samples using a selection of urine samples with confirmed monoinfection. The results showed that the capture-based workflow is more sensitive and requires lower sequencing depth compared with metagenomics sequencing, allowing for comprehensive AMR marker detection with an LOD of 1000 CFU/mL. Combining the ARESdb AMR panel with 16S rRNA gene sequencing allowed for the culture-free detection of bacterial taxa and AMR markers directly from septic patient samples at an average sensitivity of 99%. Summarizing, the newly developed ARESdb AMR panel may serve as a valuable tool for comprehensive and sensitive AMR marker detection.

15.
Front Oncol ; 11: 703254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222027

RESUMO

The immunoglobulin B cell receptor (IgBCR) expressed by chronic lymphocytic leukemia (CLL) B cells plays a pivotal role in tumorigenesis, supporting neoplastic transformation, survival, and expansion of tumor clones. We demonstrated that in the same patient, two or more CLL clones could coexist, recognized by the expression of different variable regions of the heavy chain of IgBCR, composing the antigen-binding site. In this regard, phage display screening could be considered the easier and most advantageous methodology for the identification of small peptide molecules able to mimic the natural antigen of the tumor IgBCRs. These molecules, properly functionalized, could be used as a probe to specifically identify and isolate single CLL subpopulations, for a deeper analysis in terms of drug resistance, phenotype, and gene expression. Furthermore, CLL cells express another surface membrane receptor, the CD5, which is commonly expressed by normal T cells. Piece of evidence supports a possible contribution of CD5 to the selection and maintenance of autoreactivity in B cells and the constitutive expression of CD5 on CLL cells could induce pro-survival stimuli. In this brief research report, we describe a peptide-based single-cell sorting using as bait the IgBCR of tumor cells; in the next step, we performed a quantitative analysis of CD5 expression by qRT-PCR related to the expressed IgBCR. Our approach could open a new perspective for the identification, isolation, and investigation of all subsets of IgBCR-related CLL clones, with particular attention to the more aggressive clones.

16.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067929

RESUMO

Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.


Assuntos
Fibroblastos/fisiologia , Melanoma/metabolismo , Microambiente Tumoral/fisiologia , Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular , Plasticidade Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Melanoma/patologia , Melanoma/fisiopatologia , Transdução de Sinais , Neoplasias Cutâneas/patologia , Células Estromais/metabolismo , Melanoma Maligno Cutâneo
17.
Colloids Surf B Biointerfaces ; 205: 111881, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34062346

RESUMO

Nuclear breakdown was found to be the dominant route for DNA entry into the nucleus in actively dividing cells. The possibility that alternative routes contribute to DNA entry into the nucleus, however, cannot be ruled out. Here we address the process of lipofection by monitoring the localization of fluorescently-labelled DNA plasmids at the single-cell level by confocal imaging in living interphase cells. As test formulation we choose the cationic 3ß-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE) with plasmidic DNA pre-condensed by means of protamine. By exploiting the spectral shift of the fluorescent dye FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl)-pyridinium 2Br) we monitor the position of the nuclear envelope (NE), while concomitantly imaging the whole nucleus (by Hoechst) and the DNA (by Cy3 fluorophore) in a multi-channel 3D confocal imaging experiment. Reported results show that DNA clusters are typically associated with the NE membrane in the form of tubular invaginations spanning the nuclear environment, but not completely trapped within the NE invaginations, i.e. the DNA may use these NE regions as entry-points towards the nucleus. These observations pave the way to investigating the molecular details of the postulated processes for a better exploitation of gene-delivery vectors, particularly for applications in non-dividing cells.


Assuntos
Lipossomos , Membrana Nuclear , DNA , Microscopia Confocal , Transfecção
18.
Viruses ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918836

RESUMO

Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.


Assuntos
Descoberta de Drogas/métodos , Neoplasias/terapia , Biblioteca de Peptídeos , Peptídeos/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Proliferação de Células , Humanos , Ligantes , Transdução de Sinais
20.
Front Pharmacol ; 11: 589343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328996

RESUMO

The airways are a target tissue of type I allergies and atopy is the main etiological factor of bronchial asthma. A predisposition to allergy and individual response to allergens are dependent upon environmental and host factors. Early studies performed to clarify the role of extracellular adenosine in the airways highlighted the importance of adenosine-generating enzymes CD73, together with CD39, as an innate protection system against lung injury. In experimental animals, deletion of CD73 has been associated with immune and autoimmune diseases. Our experiments have been performed to investigate the role of CD73 in the assessment of allergic airway inflammation following sensitization. We found that in CD73-/- mice sensitization, induced by subcutaneous ovalbumin (OVA) administration, increased signs of airway inflammation and atopy developed, characterized by high IgE plasma levels and increased pulmonary cytokines, reduced frequency of lung CD4+CD25+Foxp3+ T cells, but without bronchial hyperreactivity, compared to sensitized wild type mice. Our results provide evidence that the lack of CD73 causes an uncontrolled allergic sensitization, suggesting that CD73 is a key molecule at the interface between innate and adaptive immune response. The knowledge of host immune factors controlling allergic sensitization is of crucial importance and might help to find preventive interventions that could act before an allergy develops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA