RESUMO
Ferredoxins (Fds) are small proteins which shuttle electrons to pathways like biological nitrogen fixation. Physical properties tune the reactivity of Fds with different pathways, but knowledge on how these properties can be manipulated to engineer new electron transfer pathways is lacking. Recently, we showed that an evolved strain of Rhodopseudomonas palustris uses a new electron transfer pathway for nitrogen fixation. This pathway involves a variant of the primary Fd of nitrogen fixation in R. palustris, Fer1, in which threonine at position 11 is substituted for isoleucine (Fer1T11I). To understand why this substitution in Fer1 enables more efficient electron transfer, we used in vivo and in vitro methods to characterize Fer1 and Fer1T11I. Electrochemical characterization revealed both Fer1 and Fer1T11I have similar redox transitions (-480 mV and - 550 mV), indicating the reduction potential was unaffected despite the proximity of T11 to an ironsulfur (FeS) cluster of Fer1. Additionally, disruption of hydrogen bonding around an FeS cluster in Fer1 by substituting threonine with alanine (T11A) or valine (T11V) did not increase nitrogenase activity, indicating that disruption of hydrogen bonding does not explain the difference in activity observed for Fer1T11I. Electron paramagnetic resonance spectroscopy studies revealed key differences in the electronic structure of Fer1 and Fer1T11I, which indicate changes to the high spin states and/or spin-spin coupling between the FeS clusters of Fer1. Our data implicates these electronic structure differences in facilitating electron flow and sets a foundation for further investigations to understand the connection between these properties and intermolecular electron transfer.
Assuntos
Elétrons , Ferredoxinas , Ferredoxinas/metabolismo , Fixação de Nitrogênio , Oxirredução , Transporte de Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Treonina/metabolismoRESUMO
Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.
Assuntos
Rodopseudomonas , Humanos , Animais , Anaerobiose , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Biodegradação Ambiental , MutaçãoRESUMO
Nitrogenase is the key enzyme involved in nitrogen fixation and uses low potential electrons delivered by ferredoxin (Fd) or flavodoxin (Fld) to reduce dinitrogen gas (N2) to produce ammonia, generating hydrogen gas (H2) as an obligate product of this activity. Although the phototrophic alphaproteobacterium Rhodopseudomonas palustris encodes multiple proteins that can reduce Fd, the FixABCX complex is the only one shown to support nitrogen fixation, and R. palustris Fix- mutants grow poorly under nitrogen-fixing conditions. To investigate how native electron transfer chains (ETCs) can be redirected toward nitrogen fixation, we leveraged the strong selective pressure of nitrogen limitation to isolate a suppressor of an R. palustris ΔfixC strain that grows under nitrogen-fixing conditions. We found two mutations were required to restore growth under nitrogen-fixing conditions in the absence of functional FixABCX. One mutation was in the gene encoding the primary Fd involved in nitrogen fixation, fer1, and the other mutation was in aadN, which encodes a homolog of NAD+-dependent Fd:NADPH oxidoreductase (Nfn). We present evidence that AadN plays a role in electron transfer to benzoyl coenzyme A reductase, the key enzyme involved in anaerobic aromatic compound degradation. Our data support a model where the ETC for anaerobic aromatic compound degradation was repurposed to support nitrogen fixation in the ΔfixC suppressor strain. IMPORTANCE There is increasing evidence that protein electron carriers like Fd evolved to form specific partnerships with select electron donors and acceptors to keep native electron transfer pathways insulated from one another. This makes it challenging to integrate a Fd-dependent pathway such as biological nitrogen fixation into non-nitrogen-fixing organisms and provide the high-energy reducing power needed to fix nitrogen. Here, we show that amino acid substitutions in an electron donor for anaerobic aromatic compound degradation and an Fd involved in nitrogen fixation enabled electron transfer to nitrogenase. This study provides a model system to understand electron transfer chain specificity and how new electron transfer pathways can be evolved for biotechnologically valuable pathways like nitrogen fixation.
Assuntos
Elétrons , Fixação de Nitrogênio , Anaerobiose , Nitrogenase/genética , Nitrogenase/metabolismo , Transporte de Elétrons , Proteínas/metabolismo , Ferredoxinas/metabolismo , Nitrogênio/metabolismoRESUMO
Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known pioABC Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. IMPORTANCE The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO2 for carbon by carbon dioxide fixation when electron-rich compounds like H2, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.
Assuntos
Malatos , Rodopseudomonas , Compostos Ferrosos/metabolismo , Malatos/metabolismo , Oxirredução , Rodopseudomonas/metabolismoRESUMO
Wood decomposer fungi are grouped by how they extract sugars from lignocellulose. Brown rot fungi selectively degrade cellulose and hemicellulose, leaving lignin intact, and white rot fungi degrade all components. Many trees are susceptible to both rot types, giving carbon in Earth's woody biomass, specifically lignin, a flexible fate that is affected not only by the fungal decomposition mechanism but also the associated microbial community. However, little is understood about how rot type may influence the microbial community in decaying wood. In this study, we quantified bacterial communities associated with Fomes fomentarius (white rot) and Fomitopsis betulina (brown rot) found on a shared tree host species, birch (Betula papyrifera). We collected 25 wood samples beneath sporocarps of F. fomentarius (n = 13) and F. betulina (n = 12) on standing dead trees, and coupled microbial DNA sequencing with chemical signatures of rot type (pH and lignin removal). We found that bacterial communities for both fungi were dominated by Proteobacteria, a commonly reported association. However, rot type exerted significant influence on less abundant taxa in ways that align logically with fungal traits. Amplicon sequence variants (ASVs) were enriched in Firmicutes in white-rotted wood, and were enriched in Alphaproteobacteria, Actinobacteria and Acidobacteria in lower pH brown rot. Our results suggest that wood decomposer strategies may exert significant selection effects on bacteria, or vice versa, among less-abundant taxa that have been overlooked when using abundance as the only measure of influence.
RESUMO
The purple nonsulfur bacterium Rhodopseudomonas palustris RCB100 anaerobically degrades 3-chlorobenzoate (3-CBA), a halogenated pollutant. R. palustris RCB100 uses 3-CBA as a carbon source, while most R. palustris strains cannot. We report the complete genome sequence of strain RCB100 to help gain insight into how this bacterium degrades 3-CBA.
RESUMO
The purple nonsulfur bacterium Rhodopseudomonas palustris is a model for understanding how a phototrophic organism adapts to changes in light intensity because it produces different light-harvesting (LH) complexes under high light (LH2) and low light intensities (LH3 and LH4). Outside of this change in the composition of the photosystem, little is understood about how R. palustris senses and responds to low light intensity. On the basis of the results of transcription analysis of 17 R. palustris strains grown in low light, we found that R. palustris strains downregulate many genes involved in iron transport and homeostasis. The only operon upregulated in the majority of R. palustris exposed to low light intensity was pucBAd, which encodes LH4. In previous work, pucBAd expression was shown to be modulated in response to light quality by bacteriophytochromes that are part of a low-light signal transduction system. Here we found that this signal transduction system also includes a redox-sensitive protein, LhfE, and that its redox sensitivity is required for LH4 synthesis in response to low light. Our results suggest that R. palustris upregulates its LH4 system when the cellular redox state is relatively oxidized. Consistent with this, we found that LH4 synthesis was upregulated under high light intensity when R. palustris was grown semiaerobically or under nitrogen-fixing conditions. Thus, changes in the LH4 system in R. palustris are not dependent on light intensity per se but rather on cellular redox changes that occur as a consequence of changes in light intensity.IMPORTANCE An essential aspect of the physiology of phototrophic bacteria is their ability to adjust the amount and composition of their light-harvesting apparatus in response to changing environmental conditions. The phototrophic purple bacterium R. palustris adapts its photosystem to a range of light intensities by altering the amount and composition of its peripheral LH complexes. Here we found that R. palustris regulates its LH4 complex in response to the cellular redox state rather than in response to light intensity per se Relatively oxidizing conditions, including low light, semiaerobic growth, and growth under nitrogen-fixing conditions, all stimulated a signal transduction system to activate LH4 expression. By understanding how LH composition is regulated in R. palustris, we will gain insight into how and why a photosynthetic organism senses and adapts its photosystem to multiple environmental cues.
Assuntos
Oxigênio/metabolismo , Rodopseudomonas/metabolismo , Rodopseudomonas/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Óperon , Oxirredução , Fotossíntese , Rodopseudomonas/genéticaRESUMO
The phototrophic alpha-proteobacterium, Rhodopseudomonas palustris, is a model for studies of regulatory and physiological parameters that control the activity of nitrogenase. This enzyme produces the energy-rich compound H2 , in addition to converting N2 gas to NH3 . Nitrogenase is an ATP-requiring enzyme that uses large amounts of reducing power, but the electron transfer pathway to nitrogenase in R. palustris was incompletely known. Here, we show that the ferredoxin, Fer1, is the primary but not sole electron carrier protein encoded by R. palustris that serves as an electron donor to nitrogenase. A flavodoxin, FldA, is also an important electron donor, especially under iron limitation. We present a model where the electron bifurcating complex, FixABCX, can reduce both ferredoxin and flavodoxin to transfer electrons to nitrogenase, and we present bioinformatic evidence that FixABCX and Fer1 form a conserved electron transfer pathway to nitrogenase in nitrogen-fixing proteobacteria. These results may be useful in the design of strategies to reroute electrons generated during metabolism of organic compounds to nitrogenase to achieve maximal activity.
Assuntos
Nitrogenase/metabolismo , Rodopseudomonas/metabolismo , Transporte de Elétrons , Ferredoxinas/metabolismo , Nitrogênio/metabolismoRESUMO
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Assuntos
Bactérias/genética , Ferredoxinas/química , Flavodoxina/química , Fungos/genética , Nitrogenase/metabolismo , Aerobiose , Anaerobiose , Bactérias/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Genoma Bacteriano , Genoma Fúngico , Nitrogenase/genética , Filogenia , Transdução de SinaisRESUMO
Methane (CH4) is a potent greenhouse gas that is released from fossil fuels and is also produced by microbial activity, with at least one billion tonnes of CH4 being formed and consumed by microorganisms in a single year 1 . Complex methanogenesis pathways used by archaea are the main route for bioconversion of carbon dioxide (CO2) to CH4 in nature2-4. Here, we report that wild-type iron-iron (Fe-only) nitrogenase from the bacterium Rhodopseudomonas palustris reduces CO2 simultaneously with nitrogen gas (N2) and protons to yield CH4, ammonia (NH3) and hydrogen gas (H2) in a single enzymatic step. The amount of CH4 produced by purified Fe-only nitrogenase was low compared to its other products, but CH4 production by this enzyme in R. palustris was sufficient to support the growth of an obligate CH4-utilizing Methylomonas strain when the two microorganisms were grown in co-culture, with oxygen (O2) added at intervals. Other nitrogen-fixing bacteria that we tested also formed CH4 when expressing Fe-only nitrogenase, suggesting that this is a general property of this enzyme. The genomes of 9% of diverse nitrogen-fixing microorganisms from a range of environments encode Fe-only nitrogenase. Our data suggest that active Fe-only nitrogenase, present in diverse microorganisms, contributes CH4 that could shape microbial community interactions.
Assuntos
Dióxido de Carbono/metabolismo , Ferro/metabolismo , Metano/biossíntese , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Rodopseudomonas/enzimologia , Amônia/metabolismo , Hidrogênio/metabolismo , Microbiota , PrótonsRESUMO
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes.IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs.
Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Flavoproteínas Transferidoras de Elétrons/classificação , Flavoproteínas Transferidoras de Elétrons/metabolismo , Motivos de Aminoácidos , Archaea/genética , Bactérias/genética , Biologia Computacional , Flavoproteínas Transferidoras de Elétrons/química , Flavoproteínas Transferidoras de Elétrons/genética , Modelos Moleculares , Oxirredução , Conformação ProteicaRESUMO
Tn-seq was used to identify genes essential for phototrophic growth by the purple bacterium Rhodopseudomonas palustris. About 167 genes required for anaerobic growth on acetate in light were identified, 35 of which are annotated as photosynthesis genes. The essentiality of many of these genes by analysing the phenotypes of independently generated mutants that had altered pigmentation was verified. Three genes were identified, two possibly involved in biogenesis of the membrane-bound photosynthetic apparatus and one for phosphatidylcholine biosynthesis, that were not known to be essential for phototrophic growth. Site-directed mutagenesis was used to show that the NADH:quinone oxidoreductase complex IE was essential for phototrophic growth under strictly anaerobic conditions and appeared to play a role in reverse electron transport to generate NADH. A homologous NADH:quinone oxidoreductase complex IA likely operates in the opposite direction to oxidize NADH. The operation of the two enzymes in opposition would allow R. palustris to maintain redox balance. As a complement to the genetic data, proteomics experiments were carried out in which it was found that 408 proteins were present in significantly higher amounts in cells grown anaerobically in light compared with aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.
Assuntos
Acetatos/metabolismo , Transporte de Elétrons/genética , Processos Fototróficos/genética , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/genética , Anaerobiose/fisiologia , Complexo I de Transporte de Elétrons/genética , Luz , Oxirredução , Fosfatidilcolinas/biossíntese , Fotossíntese , Processos Fototróficos/fisiologiaRESUMO
Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiple pucBA operons that encode the α and ß peptides that make up these complexes. However, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of different pucBA operons to the composition and function of different LH complexes. It was also unclear how much diversity of LH complexes exists in R. palustris and affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in their pucBA gene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of the pucBA operons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression in Rhodopseudomonas strains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. IMPORTANCERhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.
RESUMO
The microalgal division Haptophyta uses a range of nutritional sourcing, including mixotrophy. The genome of a member of this taxon, Chrysochromulina tobin, suggests that interactions with its bacterial cohort are critical for C. tobin physiology. Here, we report the genomes of eight bacterial species in coculture with C. tobin.
RESUMO
Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy.
Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Metano/biossíntese , Nitrogenase/genética , Fotossíntese/genética , Rodopseudomonas/genética , Trifosfato de Adenosina/biossíntese , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Cinética , Luz , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredução , Fotofosforilação , Rodopseudomonas/enzimologia , Rodopseudomonas/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The purple nonsulfur bacterium Rhodopseudomonas palustris grows aerobically using oxidative phosphorylation or anaerobically using photophosphorylation. The oxygen-responsive transcription regulator, PpsR2, regulates the transition to a phototrophic lifestyle by repressing transcription of photosynthesis genes during aerobic growth. Whereas most R. palustris strains have an arginine (Arg) at position 439 in the helix-turn-helix DNA-binding domain of this protein, some strains, including the well-studied strain CGA009, have a cysteine (Cys) at this position. Using allelic exchange, we found that the Cys439 in PpsR2 resulted in increased pigmentation and photosynthetic gene expression under both aerobic and anaerobic conditions. The Cys439 substitution also conferred a growth advantage to R. palustris at low light intensities. This indicates that variation in the PpsR2 protein results in R. palustris strains that have two different thresholds for derepressing photosynthesis genes in response to oxygen and light.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxigênio/metabolismo , Polimorfismo Genético/genética , Rodopseudomonas/fisiologia , Alelos , Proteínas de Bactérias/genética , Luz , Fotossíntese , Pigmentação , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/efeitos da radiaçãoRESUMO
Bacteriophytochromes (BphPs) are light-sensing regulatory proteins encoded by photosynthetic and nonphotosynthetic bacteria. This protein class has been characterized structurally, but its biological activities remain relatively unexplored. Two BphPs in the anoxygenic photosynthetic bacterium Rhodopseudomonas palustris, designated regulatory proteins RpBphP2 and RpBphP3, are configured as light-regulated histidine kinases, which initiate a signal transduction system that controls expression of genes for the low light harvesting 4 (LH4) antenna complex. In vitro, RpBphP2 and RpBphP3 respond to light quality by reversible photoconversion, a property that requires the light-absorbing chromophore biliverdin. In vivo, RpBphP2 and RpBphP3 are both required for the expression of the LH4 antenna complex under anaerobic conditions, but biliverdin requires oxygen for its synthesis by heme oxygenase. On further investigation, we found that the apo-bacteriophytochrome forms of RpBphP2 and RpBphP3 are necessary and sufficient to control LH4 expression in response to light intensity in conjunction with other signal transduction proteins. One possibility is that the system senses a reduced quinone pool generated when light energy is absorbed by bacteriochlorophyll. The biliverdin-bound forms of the BphPs have the additional property of being able to fine-tune LH4 expression in response to light quality. These observations support the concept that some bacteriophytochromes can function with or without a chromophore and may be involved in regulating physiological processes not directly related to light sensing.
Assuntos
Regulação da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Fitocromo/fisiologia , Rodopseudomonas/fisiologia , Transdução de Sinais/fisiologia , Benzoquinonas/metabolismo , Biliverdina/metabolismo , Mutagênese , Fitocromo/genética , Fitocromo/metabolismo , EspectrofotometriaRESUMO
UNLABELLED: Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells. IMPORTANCE: Many proteins localize to specific sites within bacterial cells, and localization to these sites is frequently critical to proper protein function. The mechanisms that underlie protein localization are incompletely understood, in part because of the paucity of methods that allow saturation screening for mutants in which protein localization is altered. We developed a genetic reporter assay that enables screening of bacterial populations for changes in localization of proteins to the bacterial pole, and we demonstrate the utility of the system in identifying factors required for proper localization of the polar Shigella autotransporter protein IcsA. Using this method, we identify the conserved cell division protein FtsQ as being required for positioning of IcsA to the bacterial pole. We demonstrate further that the requirement for FtsQ for polar positioning applies to other autotransporters and that the method can be applied to polar proteins other than autotransporters.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Genética Microbiana/métodos , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Mutagênese Insercional , Transporte Proteico , Shigella/genéticaRESUMO
Autotransporters are outer membrane proteins that are widely distributed among gram-negative bacteria. Like other autotransporters, the Shigella autotransporter IcsA, which is required for actin assembly during infection, is secreted at the bacterial pole. In the bacterial cytoplasm, IcsA localizes to poles and potential cell division sites independent of the cell division protein FtsZ. To identify bacterial proteins involved in the targeting of IcsA to the pole in the bacterial cytoplasm, we screened a genome-scale library of Escherichia coli proteins tagged with green fluorescent protein (GFP) for those that displayed a localization pattern similar to that of IcsA-GFP in cells that lack functional FtsZ using a strain carrying a temperature-sensitive ftsZ allele. For each protein that mimicked the localization of IcsA-GFP, we tested whether IcsA localization was dependent on the presence of the protein. Although these approaches did not identify a polar receptor for IcsA, the cytoplasmic chaperone DnaK both mimicked IcsA localization at elevated temperatures as a GFP fusion and was required for the localization of IcsA to the pole in the cytoplasm of E. coli. DnaK was also required for IcsA secretion at the pole in Shigella flexneri. The localization of DnaK-GFP to poles and potential cell division sites was dependent on elevated growth temperature and independent of the presence of IcsA or functional FtsZ; native DnaK was found to be enhanced at midcell and the poles. A second Shigella autotransporter, SepA, also required DnaK for secretion, consistent with a role of DnaK more generally in the chaperoning of autotransporter proteins in the bacterial cytoplasm.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/fisiologia , Shigella/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/genética , Transporte Proteico , Proteômica , Fatores de Transcrição/genéticaRESUMO
The level of expression of conjugation genes in Enterococcus faecalis strains carrying the pheromone-responsive transferable plasmid pCF10 is determined by the ratio in the culture medium of two types of signaling peptides, a pheromone (cCF10) and an inhibitor (iCF10). Recent data have demonstrated that both peptides target the cytoplasmic receptor protein PrgX. However, the relative importance of the interaction of these peptides with the pCF10 protein PrgZ (which enhances import of cCF10) versus PrgX is not fully understood, and there is relatively little information about specific amino acid sequence determinants affecting the functional interactions of cCF10 with these proteins in vivo. To address these issues, we used a pheromone-inducible reporter gene system where various combinations of PrgX and PrgZ could be expressed in an isogenic host background to examine the biological activities of cCF10, iCF10, and variants of cCF10 isolated in a genetic screen. The results suggest that most of the amino acid sequence determinants of cCF10 pheromone activity affect interactions between the peptide and PrgX, although some sequence variants that affected peptide/PrgZ interactions were also identified. The results provide functional data to complement ongoing structural studies of PrgX and increase our understanding of the functional interactions of cCF10 and iCF10 with the pheromone-sensing machinery of pCF10.