Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 83-84: 28-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25744931

RESUMO

Magnetization transfer ratio (MTR) is a magnetic resonance imaging (MRI) method which may detect demyelination not detected by conventional MRI in the central nervous system of patients with multiple sclerosis (MS). A decrease in MTR value has previously been shown to correlate to myelin loss in the mouse cuprizone model for demyelination. In this study, we investigated the sensitivity of MTR for demyelination in the myelin oligodendrocyte (MOG) 1-125 induced experimental autoimmune encephalomyelitis (EAE) mouse model. A total of 24 female c57Bl/6 mice were randomized to a control group (N = 6) or EAE (N = 18). MTR images were obtained at a preclinical 7 Tesla Bruker MR-scanner before EAE induction (baseline), 17-19 days (midpoint) and 31-32 days (endpoint) after EAE induction. Mean MTR values were calculated in five regions of the brain and compared to weight, EAE severity score and myelin content assessed by immunostaining for proteolipid protein and luxol fast blue, lymphocyte and monocyte infiltration and iron deposition. Contrary to what was expected, MTR values in the EAE mice were higher than in the control mice at the midpoint and endpoint. No significant difference in myelin content was found according to histo- or immunohistochemistry. Changes in MTR values did not correlate to myelin content, iron content, lymphocyte or monocyte infiltration, weight or EAE severity scores. This suggest that MTR measures of brain tissue can give significant differences between control mice and EAE mice not caused by demyelination, inflammation or iron deposition, and may not be useful surrogate markers for demyelination in the MOG1-125 mouse model.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/metabolismo , Bainha de Mielina/patologia , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/metabolismo , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
2.
Neuroimage ; 83: 372-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23791837

RESUMO

General fluid-type intelligence (gF) reflects abstract reasoning and problem solving abilities, and is an important predictor for lifetime trajectories of cognition, and physical and mental health. Structural and functional neuroimaging studies have demonstrated the role of parieto-frontal gray matter, but the white matter (WM) underpinnings of gF and the contribution of individual gF components to gF-WM relationship still need to be explored. The aim of this study was to characterize, in a sample of 100 healthy middle-aged and old subjects (mean=63.8 years), the relationship between gF and indices of WM structure obtained from diffusion tensor magnetic resonance imaging (DT-MRI) (fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)). gF was estimated by principal component analysis including measures of episodic memory, reasoning, and processing speed. Tract-based spatial statistics and permutation-based inference statistics were used to test the association between gF and WM indices, while controlling for the effect of age and sex. We hypothesized a positive relationship between gF and WM structure. Based on previous studies, we further hypothesized that this relationship was heavily influenced by the processing speed component of gF. We found a robust relationship between gF and DT-MRI measures of FA, RD and MD in all major WM tracts. Higher gF score was related to higher degree of WM integrity, in middle-aged as well as old individuals. Thus, the distributed relationship between gF and indices of WM microstructure is consistent with the notion that gF reflects efficient signaling between cortical areas. Furthermore, analysis of relationships between WM measures and gF components revealed an association with information processing speed and reasoning ability, but not with episodic memory. Thus, although all subcomponents loaded high on gF factor, the speed-related components were most strongly associated with DT-MRI-derived measures. These results suggest that DT-MRI can be used to parse gF.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Inteligência/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Testes de Inteligência , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
PLoS One ; 8(12): e84162, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386344

RESUMO

In multiple sclerosis (MS), the correlation between lesion load on conventional magnetic resonance imaging (MRI) and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR) has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group () and eight cuprizone exposed groups ([Formula: see text]). The mice were exposed to [Formula: see text] (w/w) cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein) and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A) was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, [Formula: see text] per week ([Formula: see text]) and [Formula: see text] per week ([Formula: see text]) respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: [Formula: see text]. Deep gray matter: [Formula: see text]), but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética , Animais , Doenças Desmielinizantes/diagnóstico , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
4.
Int J Neuropsychopharmacol ; 15(2): 163-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21854679

RESUMO

Metabolic adverse effects such as weight gain and dyslipidaemia represent a major concern in treatment with several antipsychotic drugs, including olanzapine. It remains unclear whether such metabolic side-effects fully depend on appetite-stimulating actions, or whether some dysmetabolic features induced by antipsychotics may arise through direct perturbation of metabolic pathways in relevant peripheral tissues. Recent clinical and preclinical studies indicate that dyslipidaemia could occur independently of weight gain. Using a rat model, we showed that subchronic treatment with olanzapine induces weight gain and increases adipose tissue mass in rats with free access to food. This effect was also observed for aripiprazole, considered metabolically neutral in the clinical setting. In pair-fed rats with limited food access, neither olanzapine nor aripiprazole induced weight gain. Interestingly, olanzapine, but not aripiprazole, induced weight-independent elevation of serum triglycerides, accompanied by up-regulation of several genes involved in lipid biosynthesis, both in liver and in adipose tissues. Our findings support the existence of tissue-specific, weight-independent direct effects of olanzapine on lipid metabolism.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Lipogênese/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Triglicerídeos/sangue , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antipsicóticos/toxicidade , Aripiprazol , Benzodiazepinas/toxicidade , Peso Corporal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Hiperfagia/sangue , Hiperfagia/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Olanzapina , Piperazinas/toxicidade , Quinolonas/toxicidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA