Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Mol Life Sci ; 81(1): 80, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334784

RESUMO

Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown. To gain insights into the process leading to hearing impairment, we have analyzed the Opa1delTTAG mouse model that recapitulates the DOAplus syndrome through complementary approaches combining morpho-physiology, biochemistry, and cellular and molecular biology. We found that Opa1delTTAG mutation leads an adult-onset progressive auditory neuropathy in mice, as attested by the auditory brainstem response threshold shift over time. However, the mutant mice harbored larger otoacoustic emissions in comparison to wild-type littermates, whereas the endocochlear potential, which is a proxy for the functional state of the stria vascularis, was comparable between both genotypes. Ultrastructural examination of the mutant mice revealed a selective loss of sensory inner hair cells, together with a progressive degeneration of the axons and myelin sheaths of the afferent terminals of the spiral ganglion neurons, supporting an auditory neuropathy spectrum disorder (ANSD). Molecular assessment of cochlea demonstrated a reduction of Opa1 mRNA level by greater than 40%, supporting haploinsufficiency as the disease mechanism. In addition, we evidenced an early increase in Sirtuin 3 level and in Beclin1 activity, and subsequently an age-related mtDNA depletion, increased oxidative stress, mitophagy as well as an impaired autophagic flux. Together, these results support a novel role for OPA1 in the maintenance of inner hair cells and auditory neural structures, addressing new challenges for the exploration and treatment of OPA1-linked ANSD in patients.


Assuntos
Surdez , Perda Auditiva Central , Atrofia Óptica Autossômica Dominante , Animais , Humanos , Camundongos , GTP Fosfo-Hidrolases/genética , Perda Auditiva Central/genética , Mutação , Atrofia Óptica Autossômica Dominante/genética
2.
Front Endocrinol (Lausanne) ; 14: 1256877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854197

RESUMO

Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.


Assuntos
Hipotireoidismo , Doenças do Sistema Nervoso , Animais , Humanos , Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Hipotireoidismo/genética , Roedores/metabolismo , Mamíferos/metabolismo , Neurônios GABAérgicos/metabolismo
3.
Regul Toxicol Pharmacol ; 142: 105445, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414127

RESUMO

In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.


Assuntos
Hipotireoidismo , Heterotopia Nodular Periventricular , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Ratos , Camundongos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna , Hormônios Tireóideos/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Propiltiouracila/toxicidade
4.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36801988

RESUMO

Thyroid hormone increases energy expenditure. Its action is mediated by TR, nuclear receptors present in peripheral tissues and in the central nervous system, particularly in hypothalamic neurons. Here, we address the importance of thyroid hormone signaling in neurons, in general for the regulation of energy expenditure. We generated mice devoid of functional TR in neurons using the Cre/LoxP system. In hypothalamus, which is the center for metabolic regulation, mutations were present in 20% to 42% of the neurons. Phenotyping was performed under physiological conditions that trigger adaptive thermogenesis: cold and high-fat diet (HFD) feeding. Mutant mice displayed impaired thermogenic potential in brown and inguinal white adipose tissues and were more prone to diet-induced obesity. They showed a decreased energy expenditure on chow diet and gained more weight on HFD. This higher sensitivity to obesity disappeared at thermoneutrality. Concomitantly, the AMPK pathway was activated in the ventromedial hypothalamus of the mutants as compared with the controls. In agreement, sympathetic nervous system (SNS) output, visualized by tyrosine hydroxylase expression, was lower in the brown adipose tissue of the mutants. In contrast, absence of TR signaling in the mutants did not affect their ability to respond to cold exposure. This study provides the first genetic evidence that thyroid hormone signaling exerts a significant influence in neurons to stimulate energy expenditure in some physiological context of adaptive thermogenesis. TR function in neurons to limit weight gain in response to HFD and this effect is associated with a potentiation of SNS output.


Assuntos
Obesidade , Hormônios Tireóideos , Masculino , Camundongos , Animais , Obesidade/genética , Obesidade/metabolismo , Hormônios Tireóideos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Neurônios/metabolismo , Termogênese/fisiologia , Metabolismo Energético/genética
5.
Eur Thyroid J ; 12(2)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715693

RESUMO

Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Camundongos , Metamorfose Biológica , Anfíbios
6.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374165

RESUMO

Thyroid hormone (T3) and its nuclear receptors (TR) are important regulators of energy expenditure and adaptive thermogenesis, notably through their action in the brown adipose tissue (BAT). However, T3 acts in many other peripheral and central tissues which are also involved in energy expenditure. The general picture of how T3 regulates BAT thermogenesis is currently not fully established, notably due to the absence of extensive omics analyses and the lack of specific mice model. Here, we first used transcriptome and cistrome analyses to establish the list of T3/TR direct target genes in brown adipocytes. We then developed a novel model of transgenic mice, in which T3 signaling is specifically suppressed in brown adipocytes at adult stage. We addressed the capacity of these mice to mount a thermogenic response when challenged by either a cold exposure or a high-fat diet, and analyzed the associated changes in BAT transcriptome. We conclude that T3 plays a crucial role in the thermogenic response of the BAT, controlling the expression of genes involved in lipid and glucose metabolism and regulating BAT proliferation. The resulting picture provides an unprecedented view on the pathways by which T3 activates energy expenditure through an efficient adaptive thermogenesis in the BAT.


Assuntos
Adipócitos Marrons , Termogênese , Camundongos , Masculino , Animais , Adipócitos Marrons/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Hormônios Tireóideos/metabolismo , Metabolismo Energético , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
7.
Neurobiol Dis ; 174: 105896, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36243247

RESUMO

Inactivating mutations in the specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to an X-linked rare disease named MCT8 deficiency or Allan-Herndon-Dudley Syndrome. Patients exhibit a plethora of severe endocrine and neurological alterations, with no effective treatment for the neurological symptoms. An optimal mammalian model is essential to explore the pathological mechanisms and potential therapeutic approaches. Here we have generated by CRISPR/Cas9 an avatar mouse model for MCT8 deficiency with a point mutation found in two MCT8-deficient patients (P253L mice). We have predicted by in silico studies that this mutation alters the substrate binding pocket being the probable cause for impairing thyroid hormone transport. We have characterized the phenotype of MCT8-P253L mice and found endocrine alterations similar to those described in patients and in MCT8-deficient mice. Importantly, we detected brain hypothyroidism, structural and functional neurological alterations resembling the patient's neurological impairments. Thus, the P253L mouse provides a valuable model for studying the pathophysiology of MCT8 deficiency and in the future will allow to test therapeutic alternatives such as in vivo gene therapy and pharmacological chaperone therapy to improve the neurological impairments in MCT8 deficiency.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sistemas CRISPR-Cas , Hormônios Tireóideos/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232747

RESUMO

We gathered available RNA-seq and ChIP-seq data in a single database to better characterize the target genes of thyroid hormone receptors in several cell types. This database can serve as a resource to analyze the mode of action of thyroid hormone (T3). Additionally, it is an easy-to-use and convenient tool to obtain information on specific genes regarding T3 regulation or to extract large gene lists of interest according to the users' criteria. Overall, this atlas is a unique compilation of recent sequencing data focusing on T3, its receptors, modes of action, targets and roles, which may benefit researchers within the field. A preliminary analysis indicates extensive variations in the repertoire of target genes where transcription is upregulated by chromatin-bound nuclear receptors. Although it has a major influence, chromatin accessibility is not the only parameter that determines the cellular selectivity of the hormonal response.


Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Cromatina/genética , Camundongos , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo
9.
Endocrinology ; 163(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35678380

RESUMO

When bound to thyroid hormone, the nuclear receptor TRα1 activates the transcription of a number of genes in many cell types. It mainly acts by binding DNA as a heterodimer with retinoid X receptors at specific response elements related to the DR4 consensus sequence. However, the number of DR4-like elements in the genome exceed by far the number of occupied sites, indicating that minor variations in nucleotides composition deeply influence the DNA-binding capacity and transactivation activity of TRα1. An improved protocol of synthetic self-transcribing active regulatory region sequencing was used to quantitatively assess the transcriptional activity of thousands of synthetic sites in parallel. This functional screen highlights a strong correlation between the affinity of the heterodimers for DNA and their capacity to mediate the thyroid hormone response.


Assuntos
Receptores do Ácido Retinoico , Receptores dos Hormônios Tireóideos , DNA/metabolismo , Receptores do Ácido Retinoico/genética , Receptores dos Hormônios Tireóideos/metabolismo , Elementos de Resposta , Receptores X de Retinoides/genética , Hormônios Tireóideos
10.
Sci Signal ; 15(738): eabj4583, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700264

RESUMO

Resistance to thyroid hormone due to mutations in THRA, which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRß1 and TRß2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations (ThraS1/+ mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, ThraS1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.


Assuntos
Surdez , Perda Auditiva , Receptores alfa dos Hormônios Tireóideos , Animais , Perda Auditiva/genética , Camundongos , Mutação , Receptores alfa dos Hormônios Tireóideos/genética , Hormônios Tireóideos
11.
Chemosphere ; 287(Pt 3): 132253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543901

RESUMO

Nanopesticides are innovative pesticides involving engineered nanomaterials in their formulation to increase the efficiency of plant protection products, while mitigating their environmental impact. Despite the predicted growth of the nanopesticide use, no data is available on their inhalation toxicity and the potential cocktail effects between their components. In particular, the neurodevelopmental toxicity caused by prenatal exposures might have long lasting consequences. In the present study, we repeatedly exposed gestating mice in a whole-body exposure chamber to three aerosols, involving the paraquat herbicide, nanoscaled titanium dioxide particles (nTiO2), or a mixture of both. Particle number concentrations and total mass concentrations were followed to enable a metrological follow-up of the exposure sessions. Based on the aerosols characteristics, the alveolar deposited dose in mice was then estimated. RNA-seq was used to highlight dysregulations in the striatum of pups in response to the in utero exposure. Modifications in gene expression were identified at post-natal day 14, which might reflect neurodevelopmental alterations in this key brain area. The data suggest an alteration in the mitochondrial function following paraquat exposure, which is reminiscent of the pathological process leading to Parkinson disease. Markers of different cell lineages were dysregulated, showing effects, which were not limited to dopaminergic neurons. Exposure to the nTiO2 aerosol modulated the regulation of cytokines and neurotransmitters pathways, perhaps reflecting a minor neuroinflammation. No synergy was found between paraquat and nTiO2. Instead, the neurodevelopmental effects were surprisingly lower than the one measured for each substance separately.


Assuntos
Paraquat , Efeitos Tardios da Exposição Pré-Natal , Aerossóis , Animais , Encéfalo , Feminino , Expressão Gênica , Exposição por Inalação , Camundongos , Paraquat/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Titânio/toxicidade
12.
iScience ; 24(10): 103246, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34704003

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2021.102957.].

13.
iScience ; 24(9): 102957, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34485856

RESUMO

Chemicals acting as thyroid hormone disruptors (THDs) are of a particular concern for public health, considering the importance of this hormone in neurodevelopment and metabolic processes. They might either alter the circulating level of thyroid hormone (TH) or interfere with the cellular response to the hormonal stimulation. In order to assess this later possibility we selected 39 pesticides and combined several in vitro tests. Reporter assays respectively addressed the transactivation capacity of the full-length TH nuclear receptor TRα1, the transactivation capacity of its C-terminal ligand binding domain, or the ability of the hormone to destabilize the interaction between TRα1 and the transcriptional corepressor NcoR. Although some pesticides elicit a cellular response, which sometimes interferes with TH signaling, RNA-seq analysis provided no evidence that they can act as TRα1 agonists or antagonists. Their neurodevelopmental toxicity in mammals cannot be explained by an alteration of the response to TH.

14.
Cells ; 10(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071979

RESUMO

Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Termogênese/fisiologia , Hormônios Tireóideos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Humanos
15.
Ann Endocrinol (Paris) ; 82(3-4): 158-160, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172940

RESUMO

Recent articles show that thyroid hormone is a key determinant of regeneration. The regeneration capacity in adults of two cell types, cerebellum neurons and cardiomyocytes, disappeared during mammalian evolution. However, it persists at early stages of development. Data indicate that thyroid hormone, bound to its TRα1 nuclear receptor, defines the timing of the developmental transition which results in a loss of regenerative capacity. The identification of hormone-activated genes that are responsible for this transition is a new challenge for regenerative medicine.


Assuntos
Regeneração/fisiologia , Hormônios Tireóideos/fisiologia , Adulto , Animais , Humanos , Mamíferos , Regeneração/efeitos dos fármacos , Regeneração/genética , Hormônios Tireóideos/farmacologia
16.
FASEB J ; 34(11): 15480-15491, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969079

RESUMO

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1 ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα1 . In slow-twitch soleus muscle, loss-of-function of TRα1 (TRαHSACre ) alters the fiber-type composition toward a more oxidative phenotype. The change in fiber-type composition, however, does not influence the running capacity or motivation to run. RNA-sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1 -linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3-stimulated increase in whole-body energy expenditure.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Receptores alfa dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/farmacologia , Animais , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Transcriptoma
17.
iScience ; 23(6): 101236, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32563156

RESUMO

The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.

18.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331419

RESUMO

ERGO (EndocRine Guideline Optimization) is the acronym of a European Union-funded research and innovation action, that aims to break down the wall between mammalian and non-mammalian vertebrate regulatory testing of endocrine disruptors (EDs), by identifying, developing and aligning thyroid-related biomarkers and endpoints (B/E) for the linkage of effects between vertebrate classes. To achieve this, an adverse outcome pathway (AOP) network covering various modes of thyroid hormone disruption (THD) in multiple vertebrate classes will be developed. The AOP development will be based on existing and new data from in vitro and in vivo experiments with fish, amphibians and mammals, using a battery of different THDs. This will provide the scientifically plausible and evidence-based foundation for the selection of B/E and assays in lower vertebrates, predictive of human health outcomes. These assays will be prioritized for validation at OECD (Organization for Economic Cooperation and Development) level. ERGO will re-think ED testing strategies from in silico methods to in vivo testing and develop, optimize and validate existing in vivo and early life-stage OECD guidelines, as well as new in vitro protocols for THD. This strategy will reduce requirements for animal testing by preventing duplication of testing in mammals and non-mammalian vertebrates and increase the screening capacity to enable more chemicals to be tested for ED properties.


Assuntos
Bioensaio , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/análise , Monitoramento Ambiental , Animais , Bioensaio/métodos , Biomarcadores , Data Warehousing , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Monitoramento Ambiental/métodos , Avaliação do Impacto na Saúde , Implementação de Plano de Saúde , Humanos , Medição de Risco , Especificidade da Espécie , Fluxo de Trabalho
19.
Thyroid ; 30(8): 1217-1221, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32204686

RESUMO

Resistance to thyroid hormone alpha (RTHα) is a rare and under-recognized genetic disease caused by mutations of THRA, the gene encoding thyroid hormone receptor α1 (TRα1). We report here two novel THRA missense mutations (M259T, T273A) in patients with RTHα. We combined biochemical and cellular assays with in silico modeling to assess the capacity of mutant TRα1 to bind triiodothyronine (T3), to heterodimerize with RXR, to interact with transcriptional coregulators, and to transduce a T3 transcriptional response. M259T, and to a lower extent T273A, reduces the affinity of TRα1 for T3. Their negative influence is only reverted by large excess of T3. The severity of the two novel RTHα cases originates from a reduction in the binding affinity of TRα1 mutants to T3 and thus correlates with the incapacity of corepressors to dissociate from TRα1 mutants in the presence of T3.


Assuntos
Mutação de Sentido Incorreto , Receptores alfa dos Hormônios Tireóideos/genética , Síndrome da Resistência aos Hormônios Tireóideos/genética , Pré-Escolar , Simulação por Computador , Dimerização , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Ligantes , Mutação , Fenótipo , Síndrome da Resistência aos Hormônios Tireóideos/sangue , Hormônios Tireóideos , Tiroxina/metabolismo , Ativação Transcricional , Transfecção , Tri-Iodotironina/metabolismo
20.
iScience ; 23(3): 100899, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32092701

RESUMO

Mammalian brain development critically depends on proper thyroid hormone signaling, via the TRα1 nuclear receptor. The downstream mechanisms by which TRα1 impacts brain development are currently unknown. In order to investigate these mechanisms, we used mouse genetics to induce the expression of a dominant-negative mutation of TRα1 specifically in GABAergic neurons, the main inhibitory neurons in the brain. This triggered post-natal epileptic seizures and a profound impairment of GABAergic neuron maturation in several brain regions. Analysis of the transcriptome and TRα1 cistrome in the striatum allowed us to identify a small set of genes, the transcription of which is upregulated by TRα1 in GABAergic neurons and which probably plays an important role during post-natal maturation of the brain. Thus, our results point to GABAergic neurons as direct targets of thyroid hormone during brain development and suggest that many defects seen in hypothyroid brains may be secondary to GABAergic neuron malfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA