Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36751553

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

3.
Commun Biol ; 4(1): 61, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420340

RESUMO

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Pironas/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção , Estudo de Prova de Conceito , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Mol Cell Neurosci ; 98: 109-120, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31216425

RESUMO

Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.


Assuntos
Doença de Alzheimer/metabolismo , Transporte Axonal , Dinâmica Mitocondrial , Doença de Alzheimer/patologia , Animais , Humanos , Neurônios/metabolismo , Neurônios/patologia
5.
Neurology ; 88(2): 131-142, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27974645

RESUMO

OBJECTIVE: To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. METHODS: Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. RESULTS: Fibroblasts from 3 biallelic OPA1(-/-) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)-depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA-treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. CONCLUSIONS: We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion.


Assuntos
GTP Fosfo-Hidrolases/genética , Mitofagia/genética , Mutação/genética , Atrofia Óptica/genética , Antioxidantes/farmacologia , Células Cultivadas , Transtornos Cognitivos/etiologia , Análise Mutacional de DNA , DNA Mitocondrial/genética , Saúde da Família , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Humanos , Masculino , Potencial da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Atrofia Óptica/complicações , Atrofia Óptica/patologia , Linhagem , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquitina-Proteína Ligases/genética
6.
J Med Genet ; 53(2): 127-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26561570

RESUMO

BACKGROUND: Infantile-onset encephalopathy and hypertrophic cardiomyopathy caused by mitochondrial oxidative phosphorylation defects are genetically heterogeneous with defects involving both the mitochondrial and nuclear genomes. OBJECTIVE: To identify the causative genetic defect in two sisters presenting with lethal infantile encephalopathy, hypertrophic cardiomyopathy and optic atrophy. METHODS: We describe a comprehensive clinical, biochemical and molecular genetic investigation of two affected siblings from a consanguineous family. Molecular genetic analysis was done by a combined approach involving genome-wide autozygosity mapping and next-generation exome sequencing. Biochemical analysis was done by enzymatic analysis and Western blot. Evidence for mitochondrial DNA (mtDNA) instability was investigated using long-range and real-time PCR assays. Mitochondrial cristae morphology was assessed with transmission electron microscopy. RESULTS: Both affected sisters presented with a similar cluster of neurodevelopmental deficits marked by failure to thrive, generalised neuromuscular weakness and optic atrophy. The disease progression was ultimately fatal with severe encephalopathy and hypertrophic cardiomyopathy. Mitochondrial respiratory chain complex activities were globally decreased in skeletal muscle biopsies. They were found to be homozygous for a novel c.1601T>G (p.Leu534Arg) mutation in the OPA1 gene, which resulted in a marked loss of steady-state levels of the native OPA1 protein. We observed severe mtDNA depletion in DNA extracted from the patients' muscle biopsies. Mitochondrial morphology was consistent with abnormal mitochondrial membrane fusion. CONCLUSIONS: We have established, for the first time, a causal link between a pathogenic homozygous OPA1 mutation and human disease. The fatal multisystemic manifestations observed further extend the complex phenotype associated with pathogenic OPA1 mutations, in particular the previously unreported association with hypertrophic cardiomyopathy. Our findings further emphasise the vital role played by OPA1 in mitochondrial biogenesis and mtDNA maintenance.


Assuntos
Cardiomiopatia Hipertrófica/genética , GTP Fosfo-Hidrolases/genética , Encefalomiopatias Mitocondriais/genética , Mutação , Atrofia Óptica/genética , Cardiomiopatia Hipertrófica/etiologia , Feminino , GTP Fosfo-Hidrolases/metabolismo , Homozigoto , Humanos , Lactente , Encefalomiopatias Mitocondriais/etiologia , Músculo Esquelético/fisiopatologia , Atrofia Óptica/etiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA