Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872274

RESUMO

Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR. Each image acquisition was performed 30 times at the same slice position, to create noise maps showing the inter-image pixel standard deviation through the 30 images. We observed that IR changed the noise properties in the CT images by reducing noise more in homogeneous areas than at anatomical edges between structures of different densities. This difference increased with increasing IR level, and with increasing difference in density between two adjacent structures. Each vendor's IR algorithm showed slightly different noise reduction properties in how much noise was reduced at different positions in the phantom. Users need to be aware of these differences when working with optimization of protocols using IR across scanners from different vendors.

2.
Acta Radiol ; 59(9): 1110-1118, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29310445

RESUMO

Background Metal implants may introduce severe artifacts in computed tomography (CT) images. Over the last few years dedicated algorithms have been developed in order to reduce metal artifacts in CT images. Purpose To investigate and compare metal artifact reduction algorithms (MARs) from four different CT vendors when imaging three different orthopedic metal implants. Material and Methods Three clinical metal implants were attached to the leg of an anthropomorphic phantom: cobalt-chrome; stainless steel; and titanium. Four commercial MARs were investigated: SmartMAR (GE); O-MAR (Philips); iMAR (Siemens); and SEMAR (Toshiba). The images were evaluated subjectively by three observers and analyzed objectively by calculating the fraction of pixels with CT number above 500 HU in a region of interest around the metal. The average CT number and image noise were also measured. Results Both subjective evaluation and objective analysis showed that MARs reduced metal artifacts and improved the image quality for CT images containing metal implants of steel and cobalt-chrome. When using MARs on titanium, all MARs introduced new visible artifacts. Conclusion The effect of MARs varied between CT vendors and different metal implants used in orthopedic surgery. Both in subjective evaluation and objective analysis the effect of applying MARs was most obvious on steel and cobalt-chrome implants when using SEMAR from Toshiba followed by SmartMAR from GE. However, MARs may also introduce new image artifacts especially when used on titanium implants. Therefore, it is important to reconstruct all CT images containing metal with and without MARs.


Assuntos
Algoritmos , Artefatos , Metais , Dispositivos de Fixação Ortopédica , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Ligas de Cromo , Humanos , Imagens de Fantasmas , Aço Inoxidável , Titânio
3.
Eur Radiol ; 26(9): 3026-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26803507

RESUMO

OBJECTIVE: To assess the range of doses in paediatric CT scans conducted in the 1990s in Norway as input to an international epidemiology study: the EPI-CT study, http://epi-ct.iarc.fr/ . METHODS: National Cancer Institute dosimetry system for Computed Tomography (NCICT) program based on pre-calculated organ dose conversion coefficients was used to convert CT Dose Index to organ doses in paediatric CT in the 1990s. Protocols reported from local hospitals in a previous Norwegian CT survey were used as input, presuming these were used without optimization for paediatric patients. RESULTS: Large variations in doses between different scanner models and local scan parameter settings are demonstrated. Small children will receive a factor of 2-3 times higher doses compared with adults if the protocols are not optimized for them. For common CT examinations, the doses to the active bone marrow, breast tissue and brain may have exceeded 30 mGy, 60 mGy and 100 mGy respectively, for the youngest children in the 1990s. CONCLUSIONS: The doses children received from non-optimised CT examinations during the 1990s are of such magnitude that they may provide statistically significant effects in the EPI-CT study, but probably do not reflect current practice. KEY POINTS: • Some organ doses from paediatric CT in the 1990s may have exceeded 100 mGy. • Small children may have received doses 2-3 times higher compared with adults. • Different scanner models varied by a factor of 2-3 in dose to patients. • Different local scan parameter settings gave dose variations of a factor 2-3. • Modern CTs and age-adjusted protocols will give much lower paediatric doses.


Assuntos
Modelos Teóricos , Pediatria/estatística & dados numéricos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Incerteza , Adolescente , Adulto , Medula Óssea/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Noruega , Radiometria/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA