Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139813

RESUMO

Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.


Observations of our Sun and other stars at wavelengths of around one millimeter, i.e. in the range between infrared and radio waves, present a valuable complementary perspective. Despite significant technological advancements, certain critical aspects necessitate diagnostic capabilities not offered by current observatories. The proposed Atacama Large Aperture Submillimeter Telescope (AtLAST), featuring a 50-meter aperture and slated for construction at a high altitude in Chile's Atacama desert, promises to address these observational needs. Equipped with novel detectors that would cover a wide frequency range, AtLAST could unlock a plethora of scientific studies contributing to a better understanding of our host star. Simultaneous observations over a broad frequency range at rapid succession would enable the imaging of different layers of the Sun, thus elucidating the three-dimensional thermal and magnetic structure of the solar atmosphere and providing important clues for many long-standing central questions such as how the outermost layers of the Sun are heated to very high temperatures, the nature of large-scale structures like prominences, and how flares and coronal mass ejections, i.e. enormous eruptions, are produced. The latter is of particular interest to modern society due to the potentially devastating impact on the technological infrastructure we depend on today. Another unique possibility would be to study the Sun's long-term evolution in this wavelength range, which would yield important insights into its activity cycle. Moreover, the Sun serves as a fundamental reference for other stars as, due to its proximity, it is the only star that can be investigated in such detail. The results for the Sun would therefore have direct implications for understanding other stars and their impact on exoplanets. This article outlines the key scientific objectives and technical requirements for solar observations with AtLAST.

2.
Nature ; 606(7915): 674-677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676480

RESUMO

Solar flares, driven by prompt release of free magnetic energy in the solar corona1,2, are known to accelerate a substantial portion (ten per cent or more)3,4 of available electrons to high energies. Hard X-rays, produced by high-energy electrons accelerated in the flare5, require a high ambient density for their detection. This restricts the observed volume to denser regions that do not necessarily sample the entire volume of accelerated electrons6. Here we report evolving spatially resolved distributions of thermal and non-thermal electrons in a solar flare derived from microwave observations that show the true extent of the acceleration region. These distributions show a volume filled with only (or almost only) non-thermal electrons while being depleted of the thermal plasma, implying that all electrons have experienced a prominent acceleration there. This volume is isolated from a surrounding, more typical flare plasma of mainly thermal particles with a smaller proportion of non-thermal electrons. This highly efficient acceleration happens in the same volume in which the free magnetic energy is being released2.

3.
Science ; 367(6475): 278-280, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949076

RESUMO

Solar flares are powered by a rapid release of energy in the solar corona, thought to be produced by the decay of the coronal magnetic field strength. Direct quantitative measurements of the evolving magnetic field strength are required to test this. We report microwave observations of a solar flare, showing spatial and temporal changes in the coronal magnetic field. The field decays at a rate of ~5 Gauss per second for 2 minutes, as measured within a flare subvolume of ~1028 cubic centimeters. This fast rate of decay implies a sufficiently strong electric field to account for the particle acceleration that produces the microwave emission. The decrease in stored magnetic energy is enough to power the solar flare, including the associated eruption, particle acceleration, and plasma heating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA