Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virchows Arch ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890171

RESUMO

Tumor-associated antigens (TAAs) are potential targets for T cell-based immunotherapy approaches in cutaneous melanoma. BNT111, an investigational lipoplex-formulated mRNA-based therapeutic cancer vaccine encoding melanoma TAAs NY-ESO-1, tyrosinase, MAGE-A3, and TPTE, is undergoing clinical testing in adults. Expression of these TAAs in pediatric melanoma is unclear but is a prerequisite for feasibility of this treatment approach in children with melanoma. Our main objective was to characterize expression of those TAAs in pediatric melanomas compared to control cohorts. In this retrospective case control study, protein and transcript expression of NY-ESO-1, tyrosinase, MAGE-A3, and TPTE were analyzed in a cohort of 25 pediatric melanomas, 31 melanomas of young adults, 29 adult melanomas, and 30 benign melanocytic nevi in children using immunohistochemical staining and digital pathology (QuPath) and reverse transcription quantitative PCR. Based on IHC analysis, pediatric melanomas expressed tyrosinase (100.0%), TPTE (44.0%), MAGE-A3 (12.0%), and NY-ESO-1 (8.0%). Young adult melanomas expressed tyrosinase (96.8%), NY-ESO-1 (19.4%), MAGE-A3 (19.4%), and TPTE (3.2%). Adult melanomas expressed tyrosinase (86.2%), MAGE-A3 (75.9%), NY-ESO-1 (48.3%), and TPTE (48.3%). Childhood melanocytic nevi only expressed tyrosinase (93.3%). Expression prevalence of individual TAAs did not differ between subtypes of pediatric melanoma, and no association with prognosis was found. All four TAAs were expressed in pediatric melanoma, albeit NY-ESO-1 and MAGE-A3 to a lesser extent than in adult melanoma. These data support the possibility of investigating vaccines targeting these TAAs for the treatment of pediatric melanoma.

2.
Nat Med ; 29(11): 2844-2853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872225

RESUMO

The oncofetal antigen Claudin 6 (CLDN6) is highly and specifically expressed in many solid tumors, and could be a promising treatment target. We report dose escalation results from the ongoing phase 1/2 BNT211-01 trial evaluating the safety and feasibility of chimeric antigen receptor (CAR) T cells targeting the CLDN6 with or without a CAR-T cell-amplifying RNA vaccine (CARVac) at two dose levels (DLs) in relapsed/refractory CLDN6-positive solid tumors. The primary endpoints were safety and tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D). Secondary endpoints included objective response rate (ORR) and disease control rate. We observed manageable toxicity, with 10 out of 22 patients (46%) experiencing cytokine release syndrome including one grade 3 event and 1 out of 22 (5%) with grade 1 immune effector cell-associated neurotoxicity syndrome. Dose-limiting toxicities occurred in two patients at the higher DL, resolving without sequelae. CAR-T cell engraftment was robust, and the addition of CARVac was well tolerated. The unconfirmed ORR in 21 evaluable patients was 33% (7 of 21), including one complete response. The disease control rate was 67% (14 of 21), with stable disease in seven patients. Patients with germ cell tumors treated at the higher DL exhibited the highest response rate (ORR 57% (4 of 7)). The maximum tolerated dose and RP2D were not established as the trial has been amended to utilize an automated manufacturing process. A repeat of the dose escalation is ongoing and will identify a RP2D for pivotal trials. ClinicalTrials.gov Identifier: NCT04503278 .


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Linfócitos T
3.
Children (Basel) ; 7(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126407

RESUMO

Adverse thromboembolic events following administration of the anti-fibrinolytic agent tranexamic acid (TA), used to prevent/treat excessive blood loss, are rare. We present the clinical course of two young patients (22 and 56 months) receiving busulfan/melphalan (Bu/Mel) high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HSCT) to treat high-risk neuroblastoma, who developed hepatic sinusoidal obstruction syndrome (SOS) within 48 h after systemic TA treatment for a hemodynamically relevant hemorrhage. Defibrotide treatment resolved hepatic SOS, but the short time between TA administration and SOS onset suggests a causal association.

4.
BMC Cancer ; 19(1): 895, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500597

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. METHODS: CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. RESULTS: All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. CONCLUSION: Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Gangliosídeos/imunologia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Receptores de Antígenos Quiméricos , Retinoblastoma/terapia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Citotoxicidade Imunológica , Feminino , Humanos , Lactente , Masculino , Retinoblastoma/imunologia , Retinoblastoma/metabolismo , Estudos Retrospectivos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA