Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Gastroenterol ; 24(1): 59, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308212

RESUMO

BACKGROUND: Hepatocellular senescence may be a causal factor in the development and progression of non-alcoholic steatohepatitis (NASH). The most effective currently available treatment for NASH is lifestyle intervention, including dietary modification. This study aimed to evaluate the effects of dietary intervention on hallmarks of NASH and molecular signatures of hepatocellular senescence in the Gubra-Amylin NASH (GAN) diet-induced obese (DIO) and biopsy-confirmed mouse model of NASH. METHODS: GAN DIO-NASH mice with liver biopsy-confirmed NASH and fibrosis received dietary intervention by switching to chow feeding (chow reversal) for 8, 16 or 24 weeks. Untreated GAN DIO-NASH mice and chow-fed C57BL/6J mice served as controls. Pre-to-post liver biopsy histology was performed for within-subject evaluation of NAFLD Activity Score and fibrosis stage. Terminal endpoints included blood/liver biochemistry, quantitative liver histology, mitochondrial respiration and RNA sequencing. RESULTS: Chow-reversal promoted substantial benefits on metabolic outcomes and liver histology, as demonstrated by robust weight loss, complete resolution of hepatomegaly, hypercholesterolemia, elevated transaminase levels and hepatic steatosis in addition to attenuation of inflammatory markers. Notably, all DIO-NASH mice demonstrated ≥ 2 point significant improvement in NAFLD Activity Score following dietary intervention. While not improving fibrosis stage, chow-reversal reduced quantitative fibrosis markers (PSR, collagen 1a1, α-SMA), concurrent with improved liver mitochondrial respiration, complete reversal of p21 overexpression, lowered γ-H2AX levels and widespread suppression of gene expression markers of hepatocellular senescence. CONCLUSIONS: Dietary intervention (chow reversal) substantially improves metabolic, biochemical and histological hallmarks of NASH and fibrosis in GAN DIO-NASH mice. These benefits were reflected by progressive clearance of senescent hepatocellular cells, making the model suitable for profiling potential senotherapeutics in preclinical drug discovery for NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/patologia , Obesidade/metabolismo , Cirrose Hepática/patologia , Modelos Animais de Doenças , Biópsia
2.
J Appl Physiol (1985) ; 136(1): 79-88, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37969081

RESUMO

It is well known that exercise efficiency declines at intensities above the lactate threshold, yet the underlying mechanisms are poorly understood. Some have suggested it is due to a decline in mitochondrial efficiency, but this is difficult to examine in vivo. Therefore, the aim of the current study was to examine how changes in temperature and pH, mimicking those that occur during exercise, affect mitochondrial efficiency in skeletal muscle mitochondria. This study was performed on quadriceps muscle of 20 wild-type mice. Muscle tissue was dissected and either permeabilized (n = 10) or homogenized for isolation of mitochondria (n = 10), and oxidative phosphorylation capacity and P/O ratio were assessed using high-resolution respirometry. Samples from each muscle were analyzed in both normal physiological conditions (37°C, pH 7.4), decreased pH (6.8), increased temperature (40°C), and a combination of both. The combination of increased temperature and decreased pH resulted in a significantly lower P/O ratio, mirrored by an increase in leak respiration and a decrease in respiratory control ratio (RCR), in isolated mitochondria. In permeabilized fibers, RCR and leak were relatively unaffected, though a main effect of temperature was observed. Oxidative phosphorylation capacity was unaffected by changes in pH and temperature in both isolated mitochondria and permeabilized fibers. These results indicate that exercise-like changes in temperature and pH lead to impaired mitochondrial efficiency. These findings offer some degree of support to the concept of decreased mitochondrial efficiency during exercise, and may have implications for the assessment of mitochondrial function related to exercise.NEW & NOTEWORTHY To the best of our knowledge, this is the first study to examine the effects of combined changes in temperature and pH, mimicking intramuscular alterations during exercise. Our findings suggest that mitochondrial efficiency is impaired during exercise of moderate to high intensity, which could be a possible mechanism contributing to the decline in exercise efficiency at intensities above the lactate threshold.


Assuntos
Mitocôndrias Musculares , Mitocôndrias , Camundongos , Animais , Temperatura , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Concentração de Íons de Hidrogênio , Lactatos/metabolismo , Consumo de Oxigênio/fisiologia
3.
Adipocyte ; 10(1): 605-611, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709990

RESUMO

Adipose tissue mitochondrial function is gaining increasing interest since it is a good marker of overall health. Methodological challenges and variability in assessing mitochondrial respiration in fresh adipose tissue with high-resolution respirometry are unknown and should be explored. Mitochondrial respiratory capacity (MRC) in human adipose tissue declines in a gradual manner when analyses are postponed 3 h and 24 h, with a statistically significant decline 24 h after obtaining the biopsy. This decline in MRC is associated with a reduced integrity of the outer mitochondrial membrane at both time points. This study suggests that the optimal amount of tissue to be used is 20 mg and that different technicians handling the biopsy do not affect MRC.


Assuntos
Respiração Celular , Mitocôndrias , Tecido Adiposo , Humanos , Mitocôndrias/metabolismo , Reprodutibilidade dos Testes , Respiração
4.
Free Radic Biol Med ; 173: 1-6, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273538

RESUMO

Obesity has been associated with increased production of reactive oxygen species (ROS), which may be involved in the development of cardiovascular disease and type 2 diabetes (T2D). Endurance exercise lowers ROS production and increases antioxidant capacity in muscle cells, but it is currently unknown whether high intensity interval training (HIT) elicits the same effects. Twelve sedentary obese subjects at risk of developing T2D took part in a six-week intervention, performing three HIT sessions per week (five 1-min sets of high-intensity cycling (125% of VO2peak), with 90 s recovery in between sets). Muscle biopsies were obtained for assessment of ROS production (H2O2 emission), mitochondrial respiratory capacity, and antioxidant protein levels before and after the intervention. H2O2 emission decreased 60.4% after the intervention (Succinate 3 mmolï½¥l-1), concurrent with a 35.1% increase in protein levels of the antioxidant manganese superoxide dismutase (MnSOD) and a trend towards increased levels of the antioxidant catalase (p = 0.06, 72.9%). These findings were accompanied by a 19% increased mitochondrial respiratory capacity (CI + II), a 6.9% increased VO2peak and a 1.7% lower body fat percentage. These effects were achieved after just 15 min of high-intensity work and 40 min of total time spent per week. Overall, this suggests that a relatively small amount of HIT is sufficient to induce beneficial effects on ROS production and antioxidant status in muscle cells, which may lower oxidative stress and potentially protect against the development of cardiovascular disease.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Adulto , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA