Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 6(9): e80, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874792

RESUMO

We used surveillance data collected in California before, concurrent with, and subsequent to an outbreak of highly pathogenic (HP) clade 2.3.4.4 influenza A viruses (IAVs) in 2014-2015 to (i) evaluate IAV prevalence in waterfowl, (ii) assess the evidence for spill-over infections in marine mammals and (iii) genetically characterize low-pathogenic (LP) and HP IAVs to refine inference on the spatiotemporal extent of HP genome constellations and to evaluate possible evolutionary pathways. We screened samples from 1496 waterfowl and 1142 marine mammals collected from April 2014 to August 2015 and detected IAV RNA in 159 samples collected from birds (n=157) and pinnipeds (n=2). HP IAV RNA was identified in three samples originating from American wigeon (Anas americana). Genetic sequence data were generated for a clade 2.3.4.4 HP IAV-positive diagnostic sample and 57 LP IAV isolates. Phylogenetic analyses revealed that the HP IAV was a reassortant H5N8 virus with gene segments closely related to LP IAVs detected in mallards (Anas platyrhynchos) sampled in California and other IAVs detected in wild birds sampled within the Pacific Americas Flyway. In addition, our analysis provided support for common ancestry between LP IAVs recovered from waterfowl sampled in California and gene segments of reassortant HP H5N1 IAVs detected in British Columbia, Canada and Washington, USA. Our investigation provides evidence that waterfowl are likely to have played a role in the evolution of reassortant HP IAVs in the Pacific Americas Flyway during 2014-2015, whereas we did not find support for spill-over infections in potential pinniped hosts.


Assuntos
Aves/virologia , Caniformia/virologia , Monitoramento Epidemiológico/veterinária , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Infecções por Orthomyxoviridae/veterinária , América/epidemiologia , Animais , California/epidemiologia , Canadá/epidemiologia , Surtos de Doenças/veterinária , Evolução Molecular , Genoma Viral , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados , Análise de Sequência de DNA , Análise Espaço-Temporal
2.
Ecol Evol ; 7(8): 2546-2559, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428846

RESUMO

Declines in bird populations in agricultural regions of North America and Europe have been attributed to agricultural industrialization, increases in use of agrochemical application, and increased predation related to habitat modification. Based on count data compiled from Breeding Bird Survey (BBS) from 1974 to 2012, Christmas Bird Count (CBC) collected from 1914 to 2013, and hunter data from Annual Game Take Survey (AGTS) for years 1948-2010, ring-necked pheasants (Phasianus colchicus) in California have experienced substantial declines in agricultural environments. Using a modeling approach that integrates all three forms of survey data into a joint response abundance index, we found pheasant abundance was related to the amount of harvested and unharvested crop land, types of crops produced, amount of total pesticide applied, minimum temperature, precipitation, and numbers of avian competitors and predators. Specifically, major changes in agricultural practices over the last three decades were associated with declines in pheasant numbers and likely reflected widespread loss of habitat. For example, increases in cropland were associated with increased pheasant abundance during early years of study but this effect decreased through time, such that no association in recent years was evidenced. A post hoc analysis revealed that crops beneficial to pheasant abundance (e.g., barley) have declined substantially in recent decades and were replaced by less advantageous crops (e.g., nut trees). An additional analysis using a restricted data set (1990-2013) indicated recent negative impacts on pheasant numbers associated with land use practices were also associated with relatively high levels of pesticide application. Our results may provide valuable information for management policies aimed at reducing widespread declines in pheasant populations in California and may be applicable to other avian species within agricultural settings. Furthermore, this general analytical approach is not limited to pheasants and could be applied to other taxa for which multiple survey data sources exist.

3.
PLoS One ; 12(1): e0169780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068411

RESUMO

The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional conservation and climate change adaptation strategies may be warranted to maintain habitat adequate to support waterbirds in the Central Valley.


Assuntos
Aves , Clima , Ecossistema , Urbanização , Água , Áreas Alagadas , Animais , Biodiversidade , California , Conservação dos Recursos Naturais , Geografia , Humanos , Estações do Ano , Abastecimento de Água
4.
Int J Parasitol Parasites Wildl ; 4(1): 11-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830100

RESUMO

Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011-May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

5.
PLoS One ; 10(2): e0116661, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710468

RESUMO

Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%-7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon.


Assuntos
Anseriformes/parasitologia , Biodiversidade , Variação Genética , Haemosporida/genética , Especificidade de Hospedeiro , Animais , Sequência de Bases , Citocromos b/genética , Haemosporida/classificação , Haemosporida/patogenicidade , Dados de Sequência Molecular , Proteínas de Protozoários/genética
6.
Int J Parasitol Parasites Wildl ; 2: 102-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24533322

RESUMO

Information on the molecular detection of hematozoa from different tissue types and multiple years would be useful to inform sample collection efforts and interpret results of meta-analyses or investigations spanning multiple seasons. In this study, we tested blood and muscle tissue collected from northern pintails (Anas acuta) during autumn and winter of different years to evaluate prevalence and genetic diversity of Leucocytozoon, Haemoproteus, and Plasmodium infections in this abundant waterfowl species of the Central Valley of California. We first compared results for paired blood and wing muscle samples to assess the utility of different tissue types for molecular investigations of haemosporidian parasites. Second, we explored inter-annual variability of hematozoa infection in Central Valley northern pintails and investigated possible effects of age, sex, and sub-region of sample collection on estimated parasite detection probability and prevalence. We found limited evidence for differences between tissue types in detection probability and prevalence of Leucocytozoon, Haemoproteus, and Plasmodium parasites, which supports the utility of both sample types for obtaining information on hematozoan infections. However, we detected 11 haemosporidian mtDNA cyt b haplotypes in blood samples vs. six in wing muscle tissue collected during the same sample year suggesting an advantage to using blood samples for investigations of genetic diversity. Estimated prevalence of Leucocytozoon parasites was greater during 2006-2007 as compared to 2011-2012 and four unique haemosporidian mtDNA cyt b haplotypes were detected in the former sample year but not in the latter. Seven of 15 mtDNA cyt b haplotypes detected in northern pintails had 100% identity with previously reported hematozoa lineages detected in waterfowl (Haemoproteus and Leucocytozoon) or other avian taxa (Plasmodium) providing support for lack of host specificity for some parasite lineages.

7.
PLoS One ; 7(7): e41571, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911816

RESUMO

The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Radar , Estações do Ano , Tempo (Meteorologia) , Animais , California , Patos/fisiologia , Geografia , Telemetria
8.
PLoS One ; 7(2): e31471, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328934

RESUMO

Although wild waterfowl are the main reservoir for low pathogenic avian influenza viruses (LPAIv), the environment plays a critical role for the circulation and persistence of AIv. LPAIv may persist for extended periods in cold environments, suggesting that waterfowl breeding areas in the northern hemisphere may be an important reservoir for AIv in contrast to the warmer southern wintering areas. We evaluated whether southern wetlands, with relatively small populations (thousands) of resident waterfowl, maintain AIv in the summer, prior to the arrival of millions of migratory birds. We collected water and fecal samples at ten wetlands in two regions (Yolo Bypass and Sacramento Valley) of the California Central Valley during three bi-weekly intervals beginning in late July, 2010. We detected AIv in 29/367 fecal samples (7.9%) and 12/597 water samples (2.0%) by matrix real time Reverse Transcription Polymerase Chain Reaction (rRT-PCR). We isolated two H3N8, two H2N3, and one H4N8 among rRT-PCR positive fecal samples but no live virus from water samples. Detection of AIv RNA in fecal samples was higher from wetlands in the Sacramento Valley (11.9%) than in the Yolo Bypass (0.0%), but no difference was found for water samples (2.7 vs. 1.7%, respectively). Our study showed that low densities of hosts and unfavorable environmental conditions did not prevent LPAIv circulation during summer in California wetlands. Our findings justify further investigations to understand AIv dynamics in resident waterfowl populations, compare AIv subtypes between migratory and resident waterfowl, and assess the importance of local AIv as a source of infection for migratory birds.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/isolamento & purificação , Áreas Alagadas , Animais , California , Vírus da Influenza A/genética , Influenza Aviária/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Evol Appl ; 2(4): 457-68, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25567891

RESUMO

Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA