Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Infect Dis ; 219(7): 1146-1150, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30476132

RESUMO

We recently developed anti-OspA human immunoglobulin G1 monoclonal antibodies (HuMAbs) that are effective in preventing Borrelia transmission from ticks in a murine model. Here, we investigated a novel approach of DNA-mediated gene transfer of HuMAbs that provide protection against Lyme disease. Plasmid DNA-encoded anti-OspA HuMAbs inoculated in mice achieved a serum antibody concentration of >6 µg/mL. Among mice injected with DNA-encoded monoclonal antibodies, 75%-77% were protected against an acute challenge by Borrelia-infected ticks. Our results represent the first demonstration of employing DNA transfer as a delivery system for antibodies that block transmission of Borrelia in animal models.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , DNA Bacteriano/imunologia , Lipoproteínas/imunologia , Doença de Lyme/transmissão , Animais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Borrelia burgdorferi , Feminino , Células HEK293 , Humanos , Lipoproteínas/genética , Doença de Lyme/prevenção & controle , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Plasmídeos/imunologia , Carrapatos , Transfecção
2.
NPJ Vaccines ; 2: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263874

RESUMO

Influenza virus remains a significant public health threat despite innovative vaccines and antiviral drugs. A major limitation to current vaccinations and therapies against influenza virus is pathogenic diversity generated by shift and drift. A simple, cost-effective passive immunization strategy via in vivo production of cross-protective antibody molecules may augment existing vaccines and antiviral drugs in seasonal and pandemic outbreaks. We engineered synthetic plasmid DNA to encode two novel and broadly cross-protective monoclonal antibodies targeting influenza A and B. We utilized enhanced in vivo delivery of these plasmid DNA-encoded monoclonal antibody (DMAb) constructs and show that this strategy induces robust levels of functional antibodies directed against influenza A and B viruses in mouse sera. Mice receiving a single inoculation with anti-influenza A DMAb survive lethal Group 1 H1 and Group 2 H3 influenza A challenges, while inoculation with anti-influenza B DMAb yields protection against lethal Victoria and Yamagata lineage influenza B morbidity and mortality. Furthermore, these two DMAbs can be delivered coordinately resulting in exceptionally broad protection against both influenza A and B. We demonstrate this protection is similar to that achieved by conventional protein antibody delivery. DMAbs warrant further investigation as a novel immune therapy platform with distinct advantages for sustained immunoprophylaxis against influenza.

3.
Nat Commun ; 8(1): 637, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935938

RESUMO

The impact of broad-spectrum antibiotics on antimicrobial resistance and disruption of the beneficial microbiome compels the urgent investigation of bacteria-specific approaches such as antibody-based strategies. Among these, DNA-delivered monoclonal antibodies (DMAbs), produced by muscle cells in vivo, potentially allow the prevention or treatment of bacterial infections circumventing some of the hurdles of protein IgG delivery. Here, we optimize DNA-delivered monoclonal antibodies consisting of two potent human IgG clones, including a non-natural bispecific IgG1 candidate, targeting Pseudomonas aeruginosa. The DNA-delivered monoclonal antibodies exhibit indistinguishable potency compared to bioprocessed IgG and protect against lethal pneumonia in mice. The DNA-delivered monoclonal antibodies decrease bacterial colonization of organs and exhibit enhanced adjunctive activity in combination with antibiotics. These studies support DNA-delivered monoclonal antibodies delivery as a potential strategy to augment the host immune response to prevent serious bacterial infections, and represent a significant advancement toward broader practical delivery of monoclonal antibody immunotherapeutics for additional infectious pathogens.DNA-delivered monoclonal antibodies (DMAbs) can be produced by muscle cells in vivo, potentially allowing prevention or treatment of infectious diseases. Here, the authors show that two DMAbs targeting Pseudomonas aeruginosa proteins confer protection against lethal pneumonia in mice.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Biespecíficos/uso terapêutico , Imunoglobulina G/uso terapêutico , Pneumonia Bacteriana/terapia , Engenharia de Proteínas , Pseudomonas aeruginosa , Animais , Anticorpos Antibacterianos/administração & dosagem , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Células HEK293 , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/imunologia
4.
J Infect Dis ; 214(3): 369-78, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27001960

RESUMO

BACKGROUND: Vaccination and passive antibody therapies are critical for controlling infectious diseases. Passive antibody administration has limitations, including the necessity for purification and multiple injections for efficacy. Vaccination is associated with a lag phase before generation of immunity. Novel approaches reported here utilize the benefits of both methods for the rapid generation of effective immunity. METHODS: A novel antibody-based prophylaxis/therapy entailing the electroporation-mediated delivery of synthetic DNA plasmids encoding biologically active anti-chikungunya virus (CHIKV) envelope monoclonal antibody (dMAb) was designed and evaluated for antiviral efficacy, as well as for the ability to overcome shortcomings inherent with conventional active vaccination and passive immunotherapy. RESULTS: One intramuscular injection of dMAb produced antibodies in vivo more rapidly than active vaccination with an anti-CHIKV DNA vaccine. This dMAb neutralized diverse CHIKV clinical isolates and protected mice from viral challenge. Combination of dMAb and the CHIKV DNA vaccine afforded rapid and long-lived protection. CONCLUSIONS: A DNA-based dMAb strategy induced rapid protection against an emerging viral infection. This method can be combined with DNA vaccination as a novel strategy to provide both short- and long-term protection against this emerging infectious disease. These studies have implications for pathogen treatment and control strategies.


Assuntos
Anticorpos Antivirais/imunologia , Quimioprevenção/métodos , Febre de Chikungunya/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/administração & dosagem , Modelos Animais de Doenças , Eletroporação , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Fatores de Tempo , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
5.
Sci Transl Med ; 7(301): 301ra132, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290414

RESUMO

First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelus , Macaca mulatta , Camundongos
6.
Sci Rep ; 5: 12616, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220099

RESUMO

Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In recent years, the number of cases and outbreaks has dramatically increased worldwide. While vaccines are being developed, none are currently available that provide balanced protection against all DENV serotypes. Advances in human antibody isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using conventional methods is impractical due to high costs. Engineering novel methods of delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we demonstrate that simple intramuscular delivery by electroporation of synthetic DNA plasmids engineered to express modified human nAbs against multiple DENV serotypes confers protection against DENV disease and prevents antibody-dependent enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody prophylaxis/immunotherapy approach may have important applications in the fight against infectious disease.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dengue/imunologia , Ácidos Nucleicos/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Humanos , Imunoterapia/métodos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização/métodos , Células Vero , Proteínas do Envelope Viral/imunologia
7.
Hum Gene Ther ; 25(8): 730-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25003657

RESUMO

The ErbB2 protein is a member of the tyrosine kinase family of growth factor receptors that is overexpressed in cancers of the breast, ovary, stomach, kidney, colon, and lung, and therefore represents an attractive candidate antigen for targeted cancer immunotherapy. Cytotoxic T lymphocytes specific for various immunogenic ErbB2 peptides have been described, but they often exhibit both poor functional avidity and tumor reactivity. In order to generate potent CD8(+) T cells with specificity for the ErbB2(369-377) peptide, we performed one round of in vitro peptide stimulation of CD8(+) T cells isolated from an HLA-A2(+) patient who was previously vaccinated with autologous dendritic cells pulsed with HLA class I ErbB2 peptides. Using this approach, we enriched highly avid ErbB2-reactive T cells with strong ErbB2-specific, antitumor effector functions. We then stimulated these ErbB2-reactive T cells with ErbB2(+) HLA-A2(+) tumor cells in vitro and sorted tumor-activated ErbB2(369-377) peptide T cells, which allowed for the isolation of a novel T-cell receptor (TCR) with ErbB2(369-377) peptide specificity. Primary human CD8(+) T cells genetically modified to express this ErbB2-specific TCR specifically bound ErbB2(369-377) peptide containing HLA-A2 tetramers, and efficiently recognized target cells pulsed with low nanomolar concentrations of ErbB2(369-377) peptide as well as nonpulsed ErbB2(+) HLA-A2(+) tumor cell lines in vitro. In a novel xenograft model, ErbB2-redirected T cells also significantly delayed progression of ErbB2(+) HLA-A2(+) human tumor in vivo. Together, these results support the notion that redirection of normal T-cell specificity by TCR gene transfer can have potential applications in the adoptive immunotherapy of ErbB2-expressing malignancies.


Assuntos
Neoplasias da Mama/terapia , Receptor ErbB-2/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Engenharia Genética , Humanos , Imunoterapia , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Receptor ErbB-2/metabolismo , Carga Tumoral/imunologia
8.
Vaccines (Basel) ; 2(2): 196-215, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26344618

RESUMO

DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

9.
Front Immunol ; 4: 354, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24204366

RESUMO

In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.

10.
Hum Vaccin Immunother ; 9(10): 2253-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24045230

RESUMO

Monoclonal antibody preparations have demonstrated considerable clinical utility in the treatment of specific malignancies, as well as inflammatory and infectious diseases. Antibodies are conventionally delivered by passive administration, typically requiring costly large-scale laboratory development and production. Additional limitations include the necessity for repeat administrations, and the length of in vivo potency. Therefore, the development of methods to generate therapeutic antibodies and antibody like molecules in vivo, distinct from an active antigen-based immunization strategy, would have considerable clinical utility. In fact, adeno-associated viral (AAV) vector mediated delivery of immunoglobulin genes with subsequent generation of functional antibodies has recently been developed. As well, anon-viral vector mediated nucleic acid based delivery technology could permit the generation of therapeutic/prophylactic antibodies in vivo, obviating potential safety issues associated with viral vector based gene delivery. This delivery strategy has limitations as well, mainly due to very low in vivo production and expression of protein from the delivered gene. In the study reported here we have constructed an "enhanced and optimized" DNA plasmid technology to generate immunoglobulin heavy and light chains (i.e., Fab fragments) from an established neutralizing anti-HIV envelope glycoprotein monoclonal antibody (VRC01). This "enhanced" DNA (E-DNA) plasmid technology includes codon/RNA optimization, leader sequence utilization, as well as targeted potentiation of delivery and expression of the Fab immunoglobulin genes through use of "adaptive" in vivo electroporation. The results demonstrate that delivery by this method of a single administration of the optimized Fab expressing constructs resulted in generation of Fab molecules in mouse sera possessing high antigen specific binding and HIV neutralization activity for at least 7 d after injection, against diverse HIV isolates. Importantly, this delivery strategy resulted in a rapid increase (i.e., in as little as 48 h) in Fab levels when compared with protein-based immunization. The active generation of functional Fab molecules in vivo has important conceptual and practical advantages over conventional ex vivo generation, purification and passive delivery of biologically active antibodies. Further study of this technique for the rapid generation and delivery of immunoglobulin and immunoglobulin like molecules is highly relevant and timely.


Assuntos
Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Plasmídeos/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Terapia Biológica/métodos , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/genética , Infecções por HIV/terapia , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fab das Imunoglobulinas/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
11.
PLoS One ; 8(12): e84234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391921

RESUMO

An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs), and the elicitation of antibody-dependent cellular cytotoxicity (ADCC). Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP). However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.


Assuntos
Vacinas contra a AIDS/farmacologia , Anticorpos Neutralizantes/imunologia , Imunidade Celular/imunologia , Proteínas Recombinantes/farmacologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Linhagem Celular , Citocinas , Eletroporação , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA