Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172629, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649057

RESUMO

In the context of the increasing global use of ethanol biofuel, this work investigates the concentrations of ethanol, methanol, and acetaldehyde, in both the gaseous phase and rainwater, across six diverse urban regions and biomes in Brazil, a country where ethanol accounts for nearly half the light-duty vehicular fuel consumption. Atmospheric ethanol median concentrations in São Paulo (SP) (12.3 ± 12.1 ppbv) and Ribeirão Preto (RP) (12.1 ± 10.9 ppbv) were remarkably close, despite the SP vehicular fleet being ∼13 times larger. Likewise, the rainwater VWM ethanol concentration in SP (4.64 ± 0.38 µmol L-1) was only 26 % higher than in RP (3.42 ± 0.13 µmol L-1). This work demonstrated the importance of evaporative emissions, together with biomass burning, as sources of the compounds studied. The importance of biogenic emissions of methanol during forest flooding was identified in campaigns in the Amazon and Atlantic forests. Marine air masses arriving at a coastal site led to the lowest concentrations of ethanol measured in this work. Besides vehicular and biomass burning emissions, secondary formation of acetaldehyde by photochemical reactions may be relevant in urban and non-urban regions. The combined deposition flux of ethanol and methanol was 6.2 kg ha-1 year-1, avoiding oxidation to the corresponding and more toxic aldehydes. Considering the species determined here, the ozone formation potential (OFP) in RP was around two-fold higher than in SP, further evidencing the importance of emissions from regional distilleries and biomass burning, in addition to vehicles. At the forest and coastal sites, the OFP was approximately 5 times lower than at the urban sites. Our work evidenced that transition from gasoline to ethanol or ethanol blends brings the associated risk of increasing the concentrations of highly toxic aldehydes and ozone, potentially impacting the atmosphere and threatening air quality and human health in urban areas.


Assuntos
Acetaldeído , Poluentes Atmosféricos , Monitoramento Ambiental , Etanol , Metanol , Chuva , Brasil , Acetaldeído/análise , Etanol/análise , Metanol/análise , Poluentes Atmosféricos/análise , Cidades
2.
Sci Rep ; 14(1): 5510, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448502

RESUMO

The aim of this study was to produce an alcohol gel hand sanitizer containing green glycerol. Crude glycerol was purified using chemical and physical treatments. The sanitizer was prepared using 71.100 g of 99.3° GL ethanol, 28.0 g H2O, 0.5 g of Carboxypolymethylene [Carbopol 940® or Carbomer], 5 drops of triethanolamine (pH 5-7), and glycerol (1.5% w/w). The thermal behavior of the ethanol, carbopol, triethanolamine, glycerol, and alcohol gels were evaluated using Thermogravimetry and Differential Thermal Analysis. The apparent viscosity was obtained using a rotary viscometer. The determination of in vitro spreadability was achieved by an adaptation of the Knorst method. The ethanol content was measured by headspace gas chromatography using a flame ionization detector. The thermal behavior of the gels was influenced by the presence of glycerol, which confirms the possible network interactions formed. The relative densities of the samples were between 0.887 and 0.890 g/cm3. No alteration of the pH of the formulation resulted from the incorporation of glycerol. The apparent viscosities of the alcohol gels were greater than 20,000 cP. No alteration in the in vitro spreadability of the gel alcohol (530.6 mm2) resulted from the addition of glycerol. Hand sanitizer was produced using glycerol from a transesterification reaction. It represents an alternative use for the glycerol being produced in biodiesel processes. The product satisfied the requirements of WHO that preconize a formulation containing 1.45% glycerol as an humectant to protect skin against dryness and dermatitis.


Assuntos
Etanolaminas , Glicerol , Higienizadores de Mão , Triglicerídeos , Etanol , Géis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA