Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466392

RESUMO

OBJECTIVES: Current coronary CT angiography (CTA) guidelines suggest both end-systolic and mid-diastolic phases of the cardiac cycle can be used for CTA image acquisition. However, whether differences in the phase of the cardiac cycle influence coronary plaque measurements is not known. We aim to explore the potential impact of cardiac phases on quantitative plaque assessment. METHODS: We enrolled 39 consecutive patients (23 male, age 66.2 ± 11.5 years) who underwent CTA with dual-source CT with visually evident coronary atherosclerosis and with good image quality. End-systolic and mid- to late-diastolic phase images were reconstructed from the same CTA scan. Quantitative plaque and stenosis were analyzed in both systolic and diastolic images using artificial intelligence (AI)-enabled plaque analysis software (Autoplaque). RESULTS: Overall, 186 lesions from 39 patients were analyzed. There were excellent agreement and correlation between systolic and diastolic images for all plaque volume measurements (Lin's concordance coefficient ranging from 0.97 to 0.99; R ranging from 0.96 to 0.98). There were no substantial intrascan differences per patient between systolic and diastolic phases (p > 0.05 for all) for total (1017.1 ± 712.9 mm3 vs. 1014.7 ± 696.2 mm3), non-calcified (861.5 ± 553.7 mm3 vs. 856.5 ± 528.7 mm3), calcified (155.7 ± 229.3 mm3 vs. 158.2 ± 232.4 mm3), and low-density non-calcified plaque volume (151.4 ± 106.1 mm3 vs. 151.5 ± 101.5 mm3) and diameter stenosis (42.5 ± 18.4% vs 41.3 ± 15.1%). CONCLUSION: Excellent agreement and no substantial differences were observed in AI-enabled quantitative plaque measurements on CTA in systolic and diastolic images. Following further validation, standardized plaque measurements can be performed from CTA in systolic or diastolic cardiac phase. CLINICAL RELEVANCE STATEMENT: Quantitative plaque assessment using artificial intelligence-enabled plaque analysis software can provide standardized plaque quantification, regardless of cardiac phase. KEY POINTS: • The impact of different cardiac phases on coronary plaque measurements is unknown. • Plaque analysis using artificial intelligence-enabled software on systolic and diastolic CT angiography images shows excellent agreement. • Quantitative coronary artery plaque assessment can be performed regardless of cardiac phase.

2.
JACC Cardiovasc Imaging ; 15(6): 1078-1088, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35450813

RESUMO

BACKGROUND: Pericoronary adipose tissue (PCAT) attenuation and low-attenuation noncalcified plaque (LAP) burden can both predict outcomes. OBJECTIVES: This study sought to assess the relative and additive values of PCAT attenuation and LAP to predict future risk of myocardial infarction. METHODS: In a post hoc analysis of the multicenter SCOT-HEART (Scottish Computed Tomography of the Heart) trial, the authors investigated the relationships between the future risk of fatal or nonfatal myocardial infarction and PCAT attenuation measured from coronary computed tomography angiography (CTA) using multivariable Cox regression models including plaque burden, obstructive coronary disease, and cardiac risk score (incorporating age, sex, diabetes, smoking, hypertension, hyperlipidemia, and family history). RESULTS: In 1,697 evaluable participants (age: 58 ± 10 years), there were 37 myocardial infarctions after a median follow-up of 4.7 years. Mean PCAT was -76 ± 8 HU and median LAP burden was 4.20% (IQR: 0%-6.86%). PCAT attenuation of the right coronary artery (RCA) was predictive of myocardial infarction (HR: 1.55; P = 0.017, per 1 SD increment) with an optimum threshold of -70.5 HU (HR: 2.45; P = 0.01). In multivariable analysis, adding PCAT-RCA of ≥-70.5 HU to an LAP burden of >4% (the optimum threshold for future myocardial infarction; HR: 4.87; P < 0.0001) led to improved prediction of future myocardial infarction (HR: 11.7; P < 0.0001). LAP burden showed higher area under the curve compared to PCAT attenuation for the prediction of myocardial infarction (AUC = 0.71 [95% CI: 0.62-0.80] vs AUC = 0.64 [95% CI: 0.54-0.74]; P < 0.001), with increased area under the curve when the 2 metrics are combined (AUC = 0.75 [95% CI: 0.65-0.85]; P = 0.037). CONCLUSION: Coronary CTA-defined LAP burden and PCAT attenuation have marked and complementary predictive value for the risk of fatal or nonfatal myocardial infarction.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Tecido Adiposo/diagnóstico por imagem , Idoso , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Valor Preditivo dos Testes
3.
Lancet Digit Health ; 4(4): e256-e265, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337643

RESUMO

BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0-5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm3 or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70-16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07-5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99-1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction. FUNDING: National Heart, Lung, and Blood Institute and the Miriam & Sheldon G Adelson Medical Research Foundation.


Assuntos
Aprendizado Profundo , Placa Aterosclerótica , Angiografia por Tomografia Computadorizada , Constrição Patológica/complicações , Humanos , Placa Aterosclerótica/complicações , Placa Aterosclerótica/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA