Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(8): 083601, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909800

RESUMO

We present the first measurement of two-mode squeezing between the twin beams produced by a doubly resonant optical parameter oscillator (OPO) in an above threshold operation based on parametric amplification by nondegenerate four wave mixing with rubidium (^{85}Rb). We demonstrate a maximum intensity difference squeezing of -2.7 dB (-3.5 dB corrected for losses) with a pump power of 285 mW and an output power of 12 mW for each beam, operating close to the D1 line of Rb atoms. The use of open cavities combined with the high gain media can provide a strong level of noise compression and the access to new operation regimes that could not be explored by crystal based OPOs. The spectral bandwidth of the squeezed light is broadened by the cavity dynamics, and the squeezing level is robust for strong pump powers. Stable operation was obtained up to 4 times above the threshold. Moreover, operation of the OPO close to the atomic resonances of alkali atoms allows a natural integration into quantum networks, including structures such as quantum memories.

2.
Opt Express ; 21(2): 1512-9, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389133

RESUMO

The phenomenon called Electromagnetically Induced Transparency (EIT) may induce different types of correlation between two optical fields interacting with an ensemble of atoms. It is presently well known, for example, that in the vicinity of an EIT resonance the dominant correlations at low powers turn into anti-correlations as power increases. Such correlation spectra present striking power-broadening-independent features, with the best condition for measuring the characteristic linewidth occurring at the highest powers. In the present work we investigate the physical mechanisms responsible for this set of observations. Our approach is first to reproduce these effects in a better controlled experimental setup: a cold atomic ensemble, obtained from a magneto-optical trap. The results from this conceptually simpler system were then compared to a correspondingly simpler theory, which clearly relates the observed features to the interplay between two key aspects of EIT: the transparency itself and the steep normal dispersion near two-photon resonance.


Assuntos
Campos Eletromagnéticos , Modelos Teóricos , Espalhamento de Radiação , Análise Espectral/métodos , Simulação por Computador , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA