Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nutrients ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892571

RESUMO

Pistacia lentiscus L. (P. lentiscus) is an evergreen shrub (Anacardiaceae family) primarily found in the Mediterranean region. The plant has been thoroughly characterized, resulting in a high concentration of bioactive compounds as flavonoids and phenolics. Moreover, P. lentiscus was revealed to possess a great nutritional and industrial importance because of its variety of biological activities, including antibacterial, anti-inflammatory, anti-atherogenic and antioxidant properties. Many of its beneficial health properties and applications date back to antiquity, and the European Medicines Agency officially acknowledged it as an herbal medicinal product. Indeed, it is widely employed in conventional medicine to treat several diseases, including type 2 diabetes (T2D). On this basis, this review aims to summarize and describe the chemical composition of different parts of the plant and highlight the potential of P. lentiscus, focusing on its antidiabetic activities. The plant kingdom is drawing increasing attention because of its complexity of natural molecules in the research of novel bioactive compounds for drug development. In this context, P. lentiscus demonstrated several in vitro and in vivo antidiabetic effects, acting upon many therapeutic T2D targets. Therefore, the information available in this review highlighted the multitarget effects of P. lentiscus and its great potential in T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Pistacia , Extratos Vegetais , Pistacia/química , Hipoglicemiantes/farmacologia , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Fitoterapia , Animais
2.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823536

RESUMO

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Assuntos
Inibidores Enzimáticos , Luteolina , Simulação de Acoplamento Molecular , Xantina Oxidase , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Luteolina/química , Luteolina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Simulação de Dinâmica Molecular , Flores/química , Alopurinol/farmacologia , Alopurinol/química , Humanos , Sítios de Ligação
3.
Fitoterapia ; 176: 106002, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729245

RESUMO

Pain and inflammation are major health issues worldwide, leading to negative consequences. Despite several drugs being available to manage these conditions, their effectiveness can be limited by cost, adverse reactions, and potential tolerance and dependence with long-term use. Euphorbia characias traditionally used in folk medicine for its diverse biological activities - including antiproliferative, antimicrobial, and anti-inflammatory effects - has not been extensively studied in vivo for its analgesic and anti-inflammatory properties. In this study, the antinociceptive and anti-inflammatory properties of the water and ethanolic extracts of E. characias flowers (ECAEFl and ECEEFl) were evaluated using various models. Both extracts significantly reduced paw licking time in a formalin-induced paw licking model, with ECAEFl specifically targeting and ECEEFl affecting both the neurogenic and inflammatory phases. Additionally, in the carrageenan-induced cell migration model, both extracts showed a significant decrease in leukocyte migration, protein extravasation and nitric oxide levels, further demostrating their anti-inflammatory activity. High-Resolution HPLC-ESI-QTOF-MS-MS and HPLC-PDA analysis characterized the chemical composition of the extracts, identifying a significant presence of phenolic compounds, particularly quercetin and its derivatives, which likely contribute to the observed biological activities. These findings highlight the potential of E. characias extracts as natural sources of compounds with antinociceptive and anti-inflammatory properties. Further investigations are needed to elucidate the underlying mechanisms and explore their therapeutic potential in pain and inflammation-related disorders.


Assuntos
Analgésicos , Anti-Inflamatórios , Modelos Animais de Doenças , Euphorbia , Flores , Inflamação , Dor Nociceptiva , Extratos Vegetais , Animais , Euphorbia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia , Flores/química , Inflamação/tratamento farmacológico , Masculino , Dor Nociceptiva/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
4.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474551

RESUMO

Essential oils are well known for their biological properties, making them useful for the treatment of various diseases. However, because of their poor stability and high volatility, their potential cannot be fully exploited. The use of nanoformulations to deliver essential oils can solve these critical issues and amplify their biological activities. We characterized an essential oil from Satureja thymbra via GC-MS and HPLC-DAD to provide qualitative and quantitative data. The essential oil was formulated in phospholipid vesicles which were characterized for size, surface charge, and storage stability. The entrapment efficiency was evaluated as the quantification of the major monoterpenoid phenols via HPLC-DAD. The morphological characterization of the vesicles was carried out via cryo-TEM and SAXS analyses. The essential oil's antioxidant potential was assayed via two colorimetric tests (DPPH• and FRAP) and its cytocompatibility was evaluated in HaCaT skin cell cultures. The results showed that the nanoformulations developed for the loading of S. thymbra essential oil were below 100 nm in size, predominantly unilamellar, stable in storage, and had high entrapment efficiencies. The vesicles also displayed antioxidant properties and high cytocompatibility. These promising findings pave the way for further investigation of the therapeutic potential of S. thymbra nanoformulations upon skin application.


Assuntos
Lamiaceae , Óleos Voláteis , Satureja , Óleos Voláteis/análise , Antioxidantes , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
ChemMedChem ; 18(21): e202300400, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801332

RESUMO

Coumarin scaffold has proven to be promising in the development of bioactive agents, such as xanthine oxidase (XO) inhibitors. Novel hydroxylated 3-arylcoumarins were designed, synthesized, and evaluated for their XO inhibition and antioxidant properties. 3-(3'-Bromophenyl)-5,7-dihydroxycoumarin (compound 11) proved to be the most potent XO inhibitor, with an IC50 of 91 nM, being 162 times better than allopurinol, one of the reference controls. Kinetic analysis of compound 11 and compound 5 [3-(4'-bromothien-2'-yl)-5,7-dihydroxycoumarin], the second-best compound within the series (IC50 of 280 nM), has been performed, and both compounds showed a mixed-type inhibition. Both compounds present good antioxidant activity (ability to scavenge ABTS radical) and are able to reduce reactive oxygen species (ROS) levels in H2 O2 -treated cells. In addition, they proved to be non-cytotoxic in a Caco-2 cells viability assay. Molecular docking studies have been carried out to correlate the compounds' theoretical and experimental binding affinity to the XO binding pocket.


Assuntos
Inibidores Enzimáticos , Xantina Oxidase , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Células CACO-2 , Cinética , Inibidores Enzimáticos/química , Antioxidantes/química
6.
J Enzyme Inhib Med Chem ; 38(1): 2274798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905438

RESUMO

Type 2 diabetes (T2D) is a progressive metabolic disorder of glucose metabolism. One of the therapeutic approaches for the treatment of T2D is reducing postprandial hyperglycaemia through inhibition of the digestive enzymes α-glucosidase and α-amylase. In this context, aimed at identifying natural products endowed with anti-T2D potential, we focused on Ptilostemon casabonae (L.) Greuter, a species belonging to Asteraceae family. Enzymatic inhibition, antioxidant activity, phenolic composition and cellular assays were performed. This study revealed that the P. casabonae hydroalcoholic extract exerts a potent inhibitory activity against α-glucosidase. This activity is supported by an antioxidant effect, preventing ROS formation in a stressed cellular system. HPLC-PDA-MS/MS analysis, revealed a complex polyphenolic fraction. Among the tested pure compounds, 1,5-dicaffeoylquinic acid, apigenin and rutin displayed good α-glucosidase inhibitory activity. Our study suggested new potential of P. casabonae encouraging us to further testing the possible therapeutic potential of this extract.


Assuntos
Asteraceae , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , alfa-Amilases/metabolismo
7.
Plants (Basel) ; 12(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050078

RESUMO

Plant-derived products have been used for preventive and curative purposes from the ancient era to the present day. Several studies have demonstrated the efficacy of either multicomponent-based extracts, enriched fractions, or isolated bioactives. However, they often display low solubility and bioavailability, chemical instability, poor absorption, and even toxicity, which restrict application in therapy. The use of drug delivery systems, especially nanocarriers, can overcome these physicochemical and pharmacokinetic limitations. In this study, an extract from Onopordum illyricum leaves was produced by maceration in 80% ethanol, characterized by liquid chromatography coupled to mass spectrometry, and formulated in phospholipid vesicles with the aim of exploiting and possibly enhancing its bioactivity for skin delivery. The results showed that phenolic compounds were abundantly present in the extract, especially hydroxycinnamic acid and flavonol derivatives. The extract-loaded vesicles showed small size (<100 nm), high entrapment efficiency (even >90% for most phenolic compounds), and good long-term stability. Moreover, the extract-loaded vesicles exhibited remarkable antioxidant activity, as demonstrated by colorimetric assays and by enhanced reduction of intracellular reactive oxygen species (ROS) levels in cultured skin cells. Hence, our findings support the key role of nanotechnological approaches to promote the potential of plant extracts and strengthen their application in therapy.

8.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296507

RESUMO

Skin aging is a progressive biological process of the human body, and it is not only time-dependent. Differently substituted 3-phenylcoumarins proved to efficiently inhibit tyrosinase. In the current work, new substitution patterns have been explored, and the biological studies were extended to other important enzymes involved in the processes of skin aging, as elastase, collagenase and hyaluronidase. From the studied series, five compounds presented inhibitory activity against tyrosinase, one compound against elastase, eight compounds against collagenase and two compounds against hyaluronidase, being five compounds dual inhibitors. The 3-(4'-Bromophenyl)-5,7-dihydroxycoumarin (1) and 3-(3'-bromophenyl)-5,7-dihydroxycoumarin (2) presented the best profiles against tyrosinase (IC50 = 1.05 µM and 7.03 µM) and collagenase (IC50 = 123.4 µM and 110.4 µM); the 3-(4'-bromophenyl)-6,7-dihydroxycoumarin (4) presented a good inhibition against tyrosinase and hyaluronidase; the 3-(3'-bromophenyl)-6,7-dihydroxycoumarin (5) showed an effective tyrosinase and elastase inhibition; and 6,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (11) presented a dual profile inhibition against collagenase and hyaluronidase. Furthermore, considering the overall activities tested, compounds 1 and 2 proved to be the most promising anti-aging compounds. These compounds also showed to have a photo-protective effect, without being cytotoxic to human skin keratinocyte cells. To predict the binding site with the target enzymes, computational studies were also carried out.


Assuntos
Envelhecimento da Pele , Dermatopatias , Humanos , Monofenol Mono-Oxigenase , Elastase Pancreática/metabolismo , Hialuronoglucosaminidase , Fator de Proteção Solar , Simulação de Acoplamento Molecular , Colagenases/metabolismo , Envelhecimento , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
9.
ChemMedChem ; 17(21): e202200305, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36093940

RESUMO

Melanin biosynthesis is enzymatically regulated by tyrosinase (TYR, EC 1.14.18.1), which is efficiently inhibited by natural and synthetic phenols, demonstrating potential therapeutic application for the treatment of several human diseases. Herein we report the inhibitory effects of a series of (4-(4-hydroxyphenyl)piperazin-1-yl)arylmethanone derivatives, that were designed, synthesised and assayed against TYR from Agaricus bisporus (AbTYR). The best inhibitory activity was predominantly found for compounds bearing selected hydrophobic ortho-substituents on the aroyl moiety (IC50 values in the range of 1.5-4.6 µM). They proved to be more potent than the reference compound kojic acid (IC50 =17.8 µM) and displayed competitive mechanism of inhibition of diphenolase activity of AbTYR. Docking simulation predicted their binding mode into the catalytic cavities of AbTYR and the modelled human TYR. In addition, these compounds displayed antioxidant activity combined with no cytotoxicity in MTT tests. Notably, the best inhibitor affected tyrosinase activity in α-MSH-stimulated B16F10 cells, thus demonstrating anti-melanogenic activity.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Humanos , Piperazina/farmacologia , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
10.
Plants (Basel) ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890482

RESUMO

Plant extracts have long served as important sources of bioactive compounds, and they are currently the focus of extensive research in the development of novel preventive and therapeutic strategies. However, their health benefits are often limited by low bioavailability. Nanoparticle delivery systems can represent a solution to such limitations. Euphorbia characias is a Mediterranean shrub known to have biological activities, such as inhibiting tyrosinase and showing a potential role as a skin-whitening agent. In this study, an ethanolic extract from E. characias leaves was tested for its inhibitory activity on skin-related enzymes, such as elastase, collagenase, and hyaluronidase, and for sun protection factors. Moreover, the extract was formulated in phospholipid vesicles to improve its local bioavailability and applicability. The vesicles were characterized by size, surface charge, storage stability, and entrapment efficiency. The nanoformulation was also evaluated for antioxidant activity and assayed for cytocompatibility and anti-tyrosinase activity in melanoma cells. Our findings demonstrated that the extract has a photo-protective effect and enzyme-inhibitory properties. E. characias nanoformulation was also cytocompatible and improved the extract's activity in the cells, suggesting a potential skin application for antimelanogenic treatments and confirming the key role of nanotechnological approaches to maximize plant extract's potentialities.

11.
Plants (Basel) ; 10(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371671

RESUMO

The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.

12.
J Enzyme Inhib Med Chem ; 36(1): 517-524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33494628

RESUMO

Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer's disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation. Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored. W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation. Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.


Assuntos
Arecaceae/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
13.
Plants (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466576

RESUMO

The aim of this study was to test the inhibitory effect of fruit extracts from Washingtonia filifera on skin aging-related enzymes. The pulp extracts did not exert a significant enzyme inhibition while seed extracts from W. filifera exhibit anti-elastase, anti-collagenase, and anti-tyrosinase activities. Tyrosinase was mildly inhibited while a stronger effect was observed with respect to elastase and collagenase inhibition. Alcoholic extracts provided better results than aqueous extracts. Among them, methanol extracts showed the prominent enzyme inhibitory activities being IC50 value for elastase and collagenase comparable and even better than the reference compound. The inhibition mode of the most active extracts was investigated by Lineweaver-Burk plot analysis. Seed extracts from W. filifera were also investigated for their photo-protective effect by Mansur equation and the antioxidant activity of W. filifera extract was evaluated in oxidative-stressed cells. To evaluate the safety of the extract, the effect on cell viability of human keratinocytes cells was analyzed. Methanol extract presented the best photo-protective effect and exerted an antioxidant activity in a cellular system with no cytotoxic effect. The overall results demonstrate that W. filifera extracts are promising sources of bioactive compounds that could be used in cosmetic and pharmaceutical preparation.

14.
Int J Biol Macromol ; 169: 428-435, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347933

RESUMO

In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.


Assuntos
Benzofuranos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/antagonistas & inibidores , Amiloide/química , Benzofuranos/química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Humanos , Hidroxilação , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , alfa-Amilases/química , alfa-Glucosidases/metabolismo
15.
ChemMedChem ; 15(18): 1757-1764, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32692882

RESUMO

Tyrosinase is a type-3 copper protein involved in the biosynthesis of melanin pigments; therefore, the inhibition of its enzymatic activity represents a promising strategy for the treatment of hyperpigmentation-related disorders. To address this point, we previously designed a class of 4-(4-fluorobenzyl)piperazin-1-yl-based compounds, which proved to be more active inhibitors against tyrosinase from mushroom Agaricus bisporus than the positive control kojic acid. Herein, we report the synthesis of further series of 4-(4-fluorobenzyl)piperazin-1-yl analogues bearing a (hetero)aromatic fragment as key feature to improve protein affinity. The newly synthesized compounds were assayed in vitro and proved to be potent inhibitors in the low-micromolar range. The active 2-thienyl and 2-furyl derivatives were selected for further modification to allow their binding mode to be analyzed by docking studies and to give satisfactory safety profiles.


Assuntos
Agaricus/enzimologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Piperazinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Piperazinas/química , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 178: 380-389, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202126

RESUMO

The development of Tyrosinase inhibitors (TYRIs) could represent an efficacious strategy for pharmacological intervention on skin pathologies related to aberrant production of melanin. Based on in silico studies we designed and tested a library of twenty-four compounds bearing the 4-(4-fluorobenzyl)piperazin-1-yl]-fragment. As result, we identified several compounds with excellent inhibit effects at low micromolar concentration against TYR from Agaricus bisporus (TyM). Among them, compound 25 (IC50 = 0.96 µM) proved to be ∼20-fold more potent than the reference compound kojic acid (IC50 = 17.76 µM) having wide applications in the cosmetics and pharmaceutical industries. The mode of interaction of active inhibitor 25 was deciphered by means of crystallography as well as molecular docking and these results were consistent with kinetic experiments. Moreover, the identified compound 25 exhibited no considerable cytotoxicity and showed anti-melanogenic effects on B16F10 melanoma cells. Therefore, a combination of computational and biochemical approaches could represent a rational guidelines for further structural modification of this class of compounds as future anti-melanogenic agents.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Piperazinas/farmacologia , Agaricus/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
17.
RSC Adv ; 9(37): 21278-21287, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521327

RESUMO

The chemical composition and biological properties of palm Washingtonia filifera (Lindl.) H. Wendl. seeds are seldom studied. Bearing this in mind, the seeds of W. filifera fruits were analysed for their fatty acid and phenolic composition and their antioxidant activity in addition to their cholinesterase and xanthine oxidase inhibitory activities. Seed extracts were revealed as a good source of phenolics with significant antioxidant activity. The phenolic profile mainly consisted of proanthocyanidins or procyanidin dimers B1-B4 among the major compounds. The highest butyrylcholinesterase inhibitory activity was found in the ethanolic extracts of seeds, with IC50 values of 13.73 ± 1.31 µg mL-1. Seed alcoholic extracts also displayed interesting xanthine oxidase inhibitory activity, with IC50 values ranging between 75.2 ± 17.0 µg mL-1 and 95.8 ± 5.9 µg mL-1. Procyanidin B1, a major component in the extracts, could be an important contributor to that activity, as it was found to possess good xanthine oxidase inhibition capacity (IC50 value of 53.51 ± 6.03 µg mL-1). Docking studies were also performed to predict the binding sites of procyanidins B1 and B2 within the xanthine oxidase structure. In all, W. filifera seeds appear as a promising natural source for the extraction of bioactive compounds with antioxidant and butyrylcholinesterase as well as xanthine oxidase inhibitory potential.

18.
Biomed Res Int ; 2018: 1219367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003087

RESUMO

Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.


Assuntos
Inibidores Enzimáticos/farmacologia , Euphorbia , Extratos Vegetais/farmacologia , Carboidratos , Inibidores de Glicosídeo Hidrolases , Estresse Oxidativo , alfa-Amilases , alfa-Glucosidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA