RESUMO
[This corrects the article DOI: 10.1021/acsptsci.3c00313.].
RESUMO
Cathepsins (Cats) are proteases that mediate the successful entry of SARS-CoV-2 into host cells. We designed and synthesized a tailored series of 21 peptidomimetics and evaluated their inhibitory activity against human cathepsins L, B, and S. Structural diversity was realized by combinations of different C-terminal warhead functions and N-terminal capping groups, while a central Leu-Phe fragment was maintained. Several compounds were identified as promising cathepsin L and S inhibitors with Ki values in the low nanomolar to subnanomolar range, for example, the peptide aldehydes 9a and 9b (9a, 2.67 nM, CatL; 0.455 nM, CatS; 9b, 1.76 nM, CatL; 0.512 nM, CatS). The compounds' inhibitory activity against the main protease of SARS-CoV-2 (Mpro) was additionally investigated. Based on the results at CatL, CatS, and Mpro, selected inhibitors were subjected to investigations of their antiviral activity in cell-based assays. In particular, the peptide nitrile 11e exhibited promising antiviral activity with an EC50 value of 38.4 nM in Calu-3 cells without showing cytotoxicity. High metabolic stability and favorable pharmacokinetic properties make 11e suitable for further preclinical development.
RESUMO
The main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target in coronaviruses because of its crucial involvement in viral replication and transcription. Here, we report on the design, synthesis, and structure-activity relationships of novel small-molecule thioesters as SARS-CoV-2 Mpro inhibitors. Compounds 3w and 3x exhibited excellent SARS-CoV-2 Mpro inhibition with kinac/Ki of 58,700 M-1 s-1 (Ki = 0.0141 µM) and 27,200 M-1 s-1 (Ki = 0.0332 µM), respectively. In Calu-3 and Vero76 cells, compounds 3h, 3i, 3l, 3r, 3v, 3w, and 3x displayed antiviral activity in the nanomolar range without host cell toxicity. Co-crystallization of 3w and 3af with SARS-CoV-2 Mpro was accomplished, and the X-ray structures showed covalent binding with the catalytic Cys145 residue of the protease. The potent SARS-CoV-2 Mpro inhibitors also inhibited the Mpro of other beta-coronaviruses, including SARS-CoV-1 and MERS-CoV, indicating that they might be useful to treat a broader range of coronaviral infections.
Assuntos
Antivirais , COVID-19 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Relação Estrutura-Atividade , Proteínas não Estruturais Virais , Raios XRESUMO
A new mild and practically simple alkyne hydroarylation protocol for the synthesis of 3-(indol-3-yl)-3-(trifluoromethyl)acrylic acid esters by the reaction of indole derivatives with ethyl/methyl 4,4,4-trifluoro-3-(indol-3-yl)but-2-enoates in trifluoroethanol was developed. This method has the following advantages: no catalyst, atom economy, high yields, broad substrate scope, and large-scale synthesis. The potential application of this protocol was further demonstrated by the synthesis of a variety of CF3 -substituted synthons and a new class of (un)symmetrical 3,3'-diindolylmethanes with a quaternary carbon core that might be biologically active.