Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biosens Bioelectron ; 215: 114560, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841765

RESUMO

In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Técnicas Biossensoriais/métodos , Imunoensaio , Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/química
2.
Microbiol Spectr ; 10(2): e0039622, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35357223

RESUMO

Point-of-care (POC) quantification of antibody responses against SARS-CoV-2 spike protein can enable decentralized monitoring of immune responses after infection or vaccination. We evaluated a novel POC microfluidic cartridge-based device (ViroTrack Sero COVID-19 Total Ab) for quantitative detection of total antibodies against SARS-CoV-2 spike trimeric spike protein compared to standard laboratory chemiluminescence (CLIA)-based tests. Antibody responses of 101 individuals were measured on capillary blood, venous whole blood, plasma, and diluted plasma samples directly on the POC. Results were available within 7 min. As the reference, plasma samples were analyzed on DiaSorin LIAISON XL CLIA analyzer using LIAISON SARS-CoV-2 IgM, LIAISON SARS-CoV-2 S1/S2 IgG, and LIAISON SARS-CoV-2 TrimericS IgG assays. The Spearman rank's correlation coefficient between ViroTrack Sero COVID-19 Total Ab and LIAISON SARS-CoV-2 S1/S2 IgG and LIAISON SARS-CoV-2 TrimericS IgG assays was found to be 0.83 and 0.89, respectively. ViroTrack Sero COVID-19 Total Ab showed high correlation between the different matrixes. Agreement for determination of samples of >230 binding antibody units (BAU)/mL on POC and CLIA methods is estimated to be around 90%. ViroTrack Sero Covid Total Ab is a rapid and simple-to-use POC test with high sensitivity and correlation of numerical results expressed in BAU/mL compared to those of a commercial CLIA assay. IMPORTANCE Serological testing is an important diagnostic support tool in the fight against COVID-19. So far, serological testing has been performed on either lateral flow assays, which perform only qualitatively and can be difficult for the individual to read, or standard laboratory assays, which are time- and resource-consuming. The purpose of the study was to evaluate the performance of a new POC microfluidic cartridge-based device based on immunomagnetic agglutination assay that can provide an accurate numerical quantification of the total antibodies within only 7 min from a single drop of capillary blood. We demonstrated a high level of correlation between the POC and the two CLIA laboratory-based immunoassays from Diasorin, thus allowing a potentially wider use of quantitative serology tests in the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Vacinas contra COVID-19 , Humanos , Imunoensaio/métodos , Imunoglobulina G , Pandemias , Testes Imediatos , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus , Vacinação
3.
J Med Virol ; 93(5): 3084-3091, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547818

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Fast, accurate, and simple blood-based assays for quantification of anti-SARS-CoV-2 antibodies are urgently needed to identify infected individuals and keep track of the spread of disease. METHODS: The study included 33 plasma samples from 20 individuals with confirmed COVID-19 by real-time reverse-transcriptase polymerase chain reaction and 40 non-COVID-19 plasma samples. Anti-SARS-CoV-2 immunoglobulin M (IgM)/immunoglobulin A (IgA) or immunoglobulin G (IgG) antibodies were detected by a microfluidic quantitative immunomagnetic assay (IMA) (ViroTrack Sero COVID IgM + IgA/IgG Ab, Blusense Diagnostics) and compared to an enzyme-linked immunosorbent assay (ELISA) (EuroImmun Medizinische Labordiagnostika). RESULTS: Of the 33 plasma samples from the COVID-19 patients, 28 were positive for IgA/IgM or IgG by IMA and 29 samples were positive by ELISA. Sensitivity for only one sample per patient was 68% for IgA + IgM and 75% IgG by IMA and 80% by ELISA. For samples collected 14 days after symptom onset, the sensitivity of both IMA and ELISA was around 91%. The specificity of the IMA reached 100% compared to 95% for ELISA IgA and 97.5% for ELISA IgG. CONCLUSION: IMA for COVID-19 is a rapid simple-to-use point-of-care test with sensitivity and specificity similar to a commercial ELISA.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Separação Imunomagnética/métodos , Testes Imediatos , SARS-CoV-2 , Idoso , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/isolamento & purificação , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/sangue , Imunoglobulina M/isolamento & purificação , Masculino , Pessoa de Meia-Idade , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
4.
Biosens Bioelectron ; 165: 112356, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510339

RESUMO

Circle-to-circle amplification (C2CA) is a specific and precise cascade nucleic acid amplification method consisting of more than one round of padlock probe ligation and rolling circle amplification (RCA). Although C2CA provides a high amplification efficiency with a negligible increase of false-positive risk, it contains several step-by-step operation processes. We herein demonstrate a homogeneous and isothermal nucleic acid quantification strategy based on C2CA and optomagnetic analysis of magnetic nanoparticle (MNP) assembly. The proposed homogeneous circle-to-circle amplification eliminates the need for additional monomerization and ligation steps after the first round of RCA, and combines two amplification rounds in a one-pot reaction. The second round of RCA produces amplicon coils that anneal to detection probes grafted onto MNPs, resulting in MNP assembly that can be detected in real-time using an optomagnetic sensor. The proposed methodology was applied for the detection of a synthetic complementary DNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2, also known as 2019-nCoV) RdRp (RNA-dependent RNA polymerase) coding sequence, achieving a detection limit of 0.4 fM with a dynamic detection range of 3 orders of magnitude and a total assay time of ca. 100 min. A mathematical model was set up and validated to predict the assay performance. Moreover, the proposed method was specific to distinguish SARS-CoV and SARS-CoV-2 sequences with high similarity.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Infecções por Coronavirus/diagnóstico , DNA Complementar/análise , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Pneumonia Viral/diagnóstico , Técnicas Biossensoriais/métodos , COVID-19 , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Limite de Detecção , Magnetismo/instrumentação , Magnetismo/métodos , Nanopartículas de Magnetita/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , SARS-CoV-2
5.
Biosens Bioelectron ; 160: 112219, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339155

RESUMO

Applications of conventional linear ligation-rolling circle amplification (RCA) are restricted by the sophisticated operation steps and unsatisfactory picomolar-level detection limits. We herein demonstrate an RCA-based cascade amplification reaction that converts a side-reaction to secondary amplification, which improves the detection limit and simplifies the operation compared to linear ligation-RCA assays. The proposed nicking-assisted enzymatic cascade amplification (NECA) comprises an on-loop amplification reaction using circular templates to generate intermediate amplicons, and an off-loop amplification reaction using intermediate amplicons as primers for end amplicons. The whole NECA reaction is homogeneous and isothermal. Amplicons anneal to detection probes that are grafted onto magnetic nanoparticles (MNPs), such that MNP clusters form and can be detected in real-time using optomagnetic measurements. The optomagnetic sensor detects the presence and size increase of MNP clusters by optical transmission measurements in an oscillating magnetic field. A detection limit of 2 fM was achieved with a total assay time of ca. 70 min. By combining optomagnetic readouts of signal phase lag and hydrodynamic size increase of MNPs, NECA-based target quantification provided a wide dynamic detection range of ca. 4.5 orders of magnitude. Moreover, the specificity and the serum detection capability of the proposed method were investigated.


Assuntos
Vírus da Dengue/isolamento & purificação , Nanopartículas de Magnetita/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Técnicas Biossensoriais/métodos , Bovinos , Primers do DNA/genética , Dengue/sangue , Dengue/virologia , Vírus da Dengue/genética , Humanos , Limite de Detecção , Magnetismo/métodos
6.
Anal Bioanal Chem ; 412(12): 2705-2710, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157358

RESUMO

Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature. In strategy I, PLP annealing took place off-chip and the PLP ligation and RCA were performed in one pot and the two reactions were clocked by a change of the temperature. For a total assay time of about 1.5 h, we obtained a limit of detection of 2 pM. In strategy II, the DNA ligation mixture and the RCA mixture were separated into two chambers on a microfluidic disc. After on-disc PLP annealing and ligation, the disc was spun to mix reagents and initiate RCA. For a total assay time of about 2 h, we obtained a limit of detection of 5 pM. Graphical abstract.


Assuntos
DNA Bacteriano/análise , Dispositivos Lab-On-A-Chip , Mutação , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , DNA Bacteriano/genética , Limite de Detecção , Mycobacterium tuberculosis/efeitos dos fármacos , Técnicas de Amplificação de Ácido Nucleico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
7.
Nucleic Acids Res ; 48(5): e30, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31956898

RESUMO

False-positive results cause a major problem in nucleic acid amplification, and require external blank/negative controls for every test. However, external controls usually have a simpler and lower background compared to the test sample, resulting in underestimation of false-positive risks. Internal negative controls, performed simultaneously with amplification to monitor the background level in real-time, are therefore appealing in both research and clinic. Herein, we describe a nonspecific product-activated single-stranded DNA-cutting approach based on CRISPR (clustered regularly interspaced short palindromic repeats) Cas12a (Cpf1) nuclease. The proposed approach, termed Cas12a-based internal referential indicator (CIRI), can indicate the onset of nonspecific amplification in an exponential rolling circle amplification strategy here combined with an optomagnetic readout. The capability of CIRI as an internal negative control can potentially be extended to other amplification strategies and sensors, improving the performance of nucleic acid amplification-based methodologies.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , DNA de Cadeia Simples/genética , Endonucleases/genética , Técnicas de Amplificação de Ácido Nucleico/normas , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Padrões de Referência
8.
RSC Adv ; 11(1): 390-396, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423016

RESUMO

The attractive electronic and magnetic properties together with their biocompatibility make iron-oxide nanoparticles appear as functional materials. In Fe-oxide nanoparticle (IONP) ensembles, it is crucial to enhance their performance thanks to controlled size, shape, and stoichiometry ensembles. In light of this, we conduct a comprehensive investigation in an ensemble of ca. 28 nm cuboid-shaped IONPs in which all the analyses concur with the coexistence of magnetite/maghemite phases in their cores. Here, we are disclosing the Verwey transition by temperature dependent (4-210 K) Raman spectroscopy.

9.
Methods Mol Biol ; 2063: 3-15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31667758

RESUMO

Rolling circle amplification (RCA) of a synthetic nucleic acid target is detected using magnetic nanoparticles (MNPs) combined with an optomagnetic (OM) readout. Two RCA assays are developed with on-chip detection of rolling circle products (RCPs) either at end-point where MNPs are mixed with the sample after completion of RCA or in real time where MNPs are mixed with the sample during RCA. The plastic chip acts as a cuvette, which is positioned in a setup integrated with temperature control and simultaneous detection of four parallel DNA hybridization reactions between functionalized MNPs and products of DNA amplification. The OM technique probes the small-angle rotation of MNPs bearing oligonucleotide probes complementary to the repeated nucleotide sequence of the RCPs. This rotation is restricted when MNPs bind to RCPs, which can be observed as a turn-off of the signal from MNPs that are free to rotate. The amount of MNPs bound to RCPs is found to increase in response to the amplification time as well as in response to the synthetic DNA target concentration (2-40 pM dynamic range). We report OM real-time results obtained with MNPs present during RCA and compare to relevant end-point OM results for RCPs generated for different RCA times. The real-time approach avoids opening of tubes post-RCA and thus reduces risk of lab contamination with amplification products without compromising the sensitivity and dynamic range of the assay.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sequência de Bases , Magnetismo , Nanopartículas de Magnetita/química , Hibridização de Ácido Nucleico/genética , Sondas de Oligonucleotídeos/genética
10.
Mikrochim Acta ; 186(8): 528, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297615

RESUMO

Rolling circle amplification (RCA) is a linear isothermal amplification technique that is widely applied in biomolecular assays due to its high specificity. Handling of a target sample using magnetic microbeads (MMBs) in a multi-step assay is appealing as the MMBs enable separation and transportation using an external magnet. Detection of amplicons using optomagnetic measurements of the rotational diffusion properties of magnetic nanoparticles (MNPs) is also appealing as it can be performed on any transparent sample container. Two strategies are described for integration of MMB sample handling in an RCA assay with on-chip optomagnetic detection of the amplification products. The first strategy relies on selective and irreversible release of the amplicons from the MMBs so that the binding of functionalized MNPs to the amplicons can be detected optomagnetically. The second strategy relies on the incorporation of MNPs into RCA products during RCA, followed by their separation on MMBs and subsequent optomagnetic detection upon release from the RCA products. Using MMB handling of RCA steps, the limits of detection (LODs) for a synthetic DNA target representative of Victoria Influenza type B were found to be between 4 and 20 pM with total assay times between 2 and 2.5 h. Without magnetic microbead sample handling, the LOD was 200 fM. The findings provide deeper insight into the use of magnetic microbeads as solid substrates to handle a DNA target for integration of RCA as well as other DNA-based assays. Graphical Abstract Schematic illustration of magnetic microbeads transporting a DNA target through the steps in a rolling circle amplification assay. Optomagnetic measurements detect the binding of magnetic nanoparticles to amplicons released from microbeads (top) or the pH-induced release of magnetic nanoparticles trapped in amplicons (bottom).


Assuntos
DNA/metabolismo , Magnetismo , Microesferas , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/análise , Concentração de Íons de Hidrogênio , Vírus da Influenza B/genética , Limite de Detecção , Nanopartículas de Magnetita/química , RNA Viral/análise
11.
Biosens Bioelectron ; 142: 111485, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301578

RESUMO

Rolling circle amplification (RCA) combined with padlock probe recognition of a DNA target is attractive for on-chip nucleic acid testing due to its high specificity and isothermal reaction conditions. However, the integration of RCA on an automated chip platform is challenging due to the different reagents needed for the reaction steps and the temperature sensitivity of the phi29 polymerase. Here, we describe the integration of an RCA assay on a single-use polymer chip platform where magnetic microbeads are used as solid support to transport the DNA target between three connected reaction chambers for (i) padlock probe annealing and ligation, (ii) RCA, and (iii) optomagnetic detection of RCA products. The three chambers were loaded with reagents by sequential filling combined with passive microfluidic structures. After loading, the on-chip assay steps were automated. For an assay in which all steps but the padlock probe annealing on the target were performed on-chip, we found a limit of detection (LOD) for a synthetic influenza target of 2 pM after 45 min of RCA, which is comparable to the corresponding laboratory assay. The entire assay, including padlock probe annealing, could be performed on-chip with an LOD of 20 pM after 45 min of RCA. This LOD can likely be reduced by further optimizing the microbead mixing. The results present important steps towards the integration and automation of RCA and potentially also other complex multi-step assays on a single-use polymer chip for molecular analysis.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Dispositivos Lab-On-A-Chip , Técnicas de Amplificação de Ácido Nucleico/instrumentação , DNA/genética , Desenho de Equipamento , Limite de Detecção , Magnetismo/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação
12.
Anal Chem ; 91(15): 10102-10109, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246001

RESUMO

Padlock probe ligation-based rolling circle amplification (RCA) can distinguish single-nucleotide variants, which is promising for the detection of drug-resistance mutations in, e.g., Mycobacterium tuberculosis (Mtb). However, the clinical application of conventional linear RCA is restricted by its unsatisfactory picomolar-level limit of detection (LOD). Herein, we demonstrate the mechanism of a nicking-enhanced RCA (NickRCA) strategy that allows several polymerases to act simultaneously on the same looped template, generating single-stranded amplicon monomers. Limiting factors of NickRCA are investigated and controlled for higher amplification efficiency. Thereafter, we describe a NickRCA-based magnetic nanoparticle (MNP) dimer formation strategy combined with a real-time optomagnetic sensor monitoring MNP dimers. The proposed methodology is applied for the detection of a common Mtb rifampicin-resistance mutation, rpoB 531 (TCG/TTG). Without additional operation steps, an LOD of 15 fM target DNA is achieved with a total assay time of ca. 100 min. Moreover, the proposed biosensor holds the advantages of single-nucleotide mutation discrimination and the robustness to quantify targets in 10% serum samples. NickRCA produces short single-stranded monomers instead of the DNA coils produced in conventional RCA, which makes it more convenient for downstream operation, immobilization or detection, thus being applicable with different molecular tools and biosensors.


Assuntos
DNA Bacteriano/análise , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , DNA Bacteriano/sangue , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Humanos , Limite de Detecção , Nanopartículas de Magnetita/química , Mycobacterium tuberculosis/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Rifampina/farmacologia
13.
Nanoscale ; 10(4): 2052-2066, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29323383

RESUMO

The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the performance of a colloidal MNP dispersion. We present and demonstrate the use of optomagnetic (OM) and AC susceptibility (ACS) measurements vs. frequency and magnetic field strength to obtain the size and magnetic moment distributions including the correlation between the distributions. The correlation between the size and the magnetic moment contains information on the morphology and intrinsic structure of the particle. In OM measurements, the variation of the second harmonic light transmission through a dispersion of MNPs is measured in response to an oscillating magnetic field. We solve the Fokker-Planck equations for MNPs with a permanent magnetic moment, and develop analytical approximations to the ACS and the OM signals that also account for the change in the curve shapes with increasing field strength. Further, we describe the influence of induced magnetic moments on the signals, by solving the Fokker-Planck equation for particles, which apart from the permanent magnetic moment may also have an induced magnetic moment and shape anisotropy. Using the results from the Fokker-Planck calculations we fit ACS and OM measurements on two multi-core particle systems. The obtained fit parameters also describe the correlations between the magnetic moment and size of the particles. From such an analysis on a commercially available polydisperse multicore particle system with an average particle size of 80 nm, we find that the MNP magnetic moment is proportional to the square root of the hydrodynamic size.

14.
Analyst ; 142(18): 3441-3450, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28828442

RESUMO

We report on an optomagnetic technique optimised for real-time molecular detection of Dengue fever virus under ideal as well as non-ideal laboratory conditions using two different detection approaches. The first approach is based on the detection of the hydrodynamic volume of streptavidin coated magnetic nanoparticles attached to biotinylated LAMP amplicons. We demonstrate detection of sub-femtomolar Dengue DNA target concentrations in the ideal contamination-free lab environment within 20 min. The second detection approach is based on sequence-specific binding of functionalised magnetic nanoparticles to loops of LAMP amplicons. Melting studies reveal that true positive and spurious amplicons have different melting points and this allows us to discriminate between them. This is found to be in a good agreement with subsequent studies on real-time sequence-specific discrimination of LAMP amplicons. The specific binding causes clustering of magnetic nanoparticles via binding to multiple sites (loops) emerging in the elongation phase of LAMP. Formation of nanoclusters is monitored via the depletion of the optomagnetic signal due to free nanoparticles. After sequence-specific validation, we claim detection of down to 100 fM of Dengue target after 20 min of LAMP with a contamination background.


Assuntos
DNA Viral/análise , Vírus da Dengue/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Nanopartículas de Magnetita , Sensibilidade e Especificidade , Sorogrupo , Estreptavidina
15.
Phys Chem Chem Phys ; 19(13): 8802-8814, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28294215

RESUMO

The remanent magnetic moment and the hydrodynamic size are important parameters for the synthesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a narrow size distribution using optomagnetic measurements. In these, the 2nd harmonic variation of the intensity of light transmitted through an MNP suspension is measured as a function of an applied axial oscillating magnetic field. We first show how the measurements of the optomagnetic signal magnitude at a low frequency vs. magnetic field amplitude can be used to determine the MNP moment. Subsequently, we use linear response theory to describe the dynamic non-equilibrium response of the MNP suspension at low magnetic field amplitudes and derive a link between optomagnetic measurements and magnetic AC susceptibility measurements. We demonstrate the presented methodology on two samples of commercially available multi-core MNPs. The results compare well with those obtained by dynamic light scattering, AC susceptibility and vibrating sample magnetometry measurements on the same samples when the different weighting of the particle size in the techniques is taken into account. The optomagnetic technique is simple, fast and does not require prior knowledge of the concentration of MNPs and it thus has the potential to be used as a routine tool for quality control of MNPs.

16.
Analyst ; 142(4): 582-585, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28074208

RESUMO

We report on optomagnetic dose-dependent detection of DNA triplex-mediated and pH-switchable clusters of functionalised magnetic nanoparticles.


Assuntos
DNA/análise , Magnetismo , Nanopartículas , Técnicas Biossensoriais , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico
17.
Biosens Bioelectron ; 88: 94-100, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488263

RESUMO

There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method. For the comparison we use the C-reactive protein (CRP) induced agglutination of identical samples of 100nm MNPs conjugated with CRP antibodies. Both methods detect agglutination as a shift to lower frequencies in measurements of the dynamics in response to an applied oscillating magnetic field. The magnetic susceptibility method probes the magnetic response whereas the optomagnetic technique probes the modulation of laser light transmitted through the sample. The two techniques provided highly correlated results upon agglutination when they measure the decrease of the signal from the individual MNPs (turn-off detection strategy), whereas the techniques provided different results, strongly depending on the read-out frequency, when detecting the signal due to MNP agglomerates (turn-on detection strategy). These observations are considered to be caused by differences in the volume-dependence of the magnetic and optical signals from agglomerates. The highest signal from agglomerates was found in the optomagnetic signal at low frequencies.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Proteína C-Reativa/análise , Nanopartículas de Magnetita/química , Testes de Aglutinação/métodos , Animais , Cabras , Humanos , Limite de Detecção , Magnetismo/métodos
18.
Biosens Bioelectron ; 85: 351-357, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183287

RESUMO

We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25pM with the same sample-to-answer time (15min 30s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10µl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Nanopartículas de Magnetita/química , Imagem Óptica/instrumentação , Trombina/análise , Técnicas Biossensoriais/economia , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip/economia , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/ultraestrutura , Imagem Óptica/economia
19.
ACS Nano ; 9(7): 7374-82, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26166357

RESUMO

We demonstrate a nanoparticle-based assay for the detection of bacteria causing urinary tract infections in patient samples with a total assay time of 4 h. This time is significantly shorter than the current gold standard, plate culture, which can take several days depending on the pathogen. The assay is based on padlock probe recognition followed by two cycles of rolling circle amplification (RCA) to form DNA coils corresponding to the target bacterial DNA. The readout of the RCA products is based on optomagnetic measurements of the specific agglutination of DNA-bound magnetic nanoparticles (MNPs) using low-cost optoelectronic components from Blu-ray drives. We implement a detection approach, which relies on the monomerization of the RCA products, the use of the monomers to link and agglutinate two populations of MNPs functionalized with universal nontarget specific detection probes and on the introduction of a magnetic incubation scheme. This enables multiplex detection of Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa at clinically relevant concentrations, demonstrating a factor of 30 improvement in sensitivity compared to previous MNP-based detection schemes. Thanks to the universal probes, the same set of functionalized MNPs can be used to read out products from a multitude of RCA targets, making the approach truly scalable for parallel detection of multiple bacteria in a future integrated point of care molecular diagnostics system.


Assuntos
DNA Bacteriano/química , Nanopartículas de Magnetita/química , Técnicas de Diagnóstico Molecular/métodos , Urinálise/métodos , Escherichia coli/genética , Humanos , Fenômenos Ópticos , Proteus mirabilis/genética , Pseudomonas aeruginosa/genética
20.
Small ; 9(2): 209-14, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23008229

RESUMO

Fullerenes are considered anchoring groups for molecular electronics due to a large contact area and their affinity for noble metals. The conductances of fullerene-terminated molecules, however, are found to be even lower than for thiol termination. The effects of weak molecule-metal coupling and symmetry breaking are studied by transport measurements of C(60) and functionalized C(60). The results demonstrate highy efficient contacts between Au and C(60), despite of deposition from solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA