RESUMO
Introduction: Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods: In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion: Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.
RESUMO
BACKGROUND: The transition from water to air is a key event in the evolution of many marine organisms to access new food sources, escape water hypoxia, and exploit the higher and temperature-independent oxygen concentration of air. Despite the importance of microorganisms in host adaptation, their contribution to overcoming the challenges posed by the lifestyle changes from water to land is not well understood. To address this, we examined how microbial association with a key multifunctional organ, the gill, is involved in the intertidal adaptation of fiddler crabs, a dual-breathing organism. RESULTS: Electron microscopy revealed a rod-shaped bacterial layer tightly connected to the gill lamellae of the five crab species sampled across a latitudinal gradient from the central Red Sea to the southern Indian Ocean. The gill bacterial community diversity assessed with 16S rRNA gene amplicon sequencing was consistently low across crab species, and the same actinobacterial group, namely Ilumatobacter, was dominant regardless of the geographic location of the host. Using metagenomics and metatranscriptomics, we detected that these members of actinobacteria are potentially able to convert ammonia to amino acids and may help eliminate toxic sulphur compounds and carbon monoxide to which crabs are constantly exposed. CONCLUSIONS: These results indicate that bacteria selected on gills can play a role in the adaptation of animals in dynamic intertidal ecosystems. Hence, this relationship is likely to be important in the ecological and evolutionary processes of the transition from water to air and deserves further attention, including the ontogenetic onset of this association. Video Abstract.
Assuntos
Actinobacteria , Braquiúros , Animais , Brânquias , Ecossistema , Adaptação ao Hospedeiro , RNA Ribossômico 16S/genética , Bactérias/genéticaRESUMO
Climate change driven by human activities encompasses the increase in atmospheric CO2 concentration and sea-surface temperature. Little is known regarding the synergistic effects of these phenomena on bacterial communities in oligotrophic marine ecosystems that are expected to be particularly vulnerable. Here, we studied bacterial community composition changes based on 16S rRNA sequencing at two fractions (0.1-0.2 and >0.2 µm) during a 10- day fully factorial mesocosm experiment in the eastern Mediterranean where the pH decreased by ~0.3 units and temperature increased by ~3 °C to project possible future changes in surface waters. The bacterial community experienced significant taxonomic differences driven by the combined effect of time and treatment; a community shift one day after the manipulations was noticed, followed by a similar state between all mesocosms at the third day, and mild shifts later on, which were remarkable mainly under sole acidification. The abundance of Synechococcus increased in response to warming, while the SAR11 clade immediately benefited from the combined acidification and warming. The effect of the acidification itself had a more persistent impact on community composition. This study highlights the importance of studying climate change consequences on ecosystem functioning both separately and simultaneously, considering the ambient environmental parameters.
RESUMO
In proglacial floodplains, glacier recession promotes biogeochemical and ecological gradients across relatively small spatial scales. The resulting environmental heterogeneity induces remarkable microbial biodiversity among proglacial stream biofilms. Yet the relative importance of environmental constraints in forming biofilm communities remains largely unknown. Extreme environmental conditions in proglacial streams may lead to the homogenizing selection of biofilm-forming microorganisms. However, environmental differences between proglacial streams may impose different selective forces, resulting in nested, spatially structured assembly processes. Here, we investigated bacterial community assembly processes by unraveling ecologically successful phylogenetic clades in two stream types (glacier-fed mainstems and non-glacier-fed tributaries) draining three proglacial floodplains in the Swiss Alps. Clades with low phylogenetic turnover rates were present in all stream types, including Gammaproteobacteria and Alphaproteobacteria, while the other clades were specific to one stream type. These clades constituted up to 34.8% and 31.1% of the community diversity and up to 61.3% and 50.9% of the relative abundances in mainstems and tributaries, respectively, highlighting their importance and success in these communities. Furthermore, the proportion of bacteria under homogeneous selection was inversely related to the abundance of photoautotrophs, and these clades may therefore decrease in abundance with the future "greening" of proglacial habitats. Finally, we found little effect of physical distance from the glacier on clades under selection in glacier-fed streams, probably due to the high hydrological connectivity of our study reaches. Overall, these findings shed new light on the mechanisms of microbial biofilm assembly in proglacial streams and help us to predict their future in a rapidly changing environment. IMPORTANCE Streams draining proglacial floodplains harbor benthic biofilms comprised of diverse microbial communities. These high-mountain ecosystems are rapidly changing with climate warming, and it is therefore critical to better understand the mechanisms underlying the assembly of their microbial communities. We found that homogeneous selection dominates the structuring of bacterial communities in benthic biofilms in both glacier-fed mainstems and nonglacier tributary streams within three proglacial floodplains in the Swiss Alps. However, differences between glacier-fed and tributary ecosystems may impose differential selective forces. Here, we uncovered nested, spatially structured assembly processes for proglacial floodplain communities. Our analyses additionally provided insights into linkages between aquatic photoautotrophs and the bacterial taxa under homogeneous selection, potentially by providing a labile source of carbon in these otherwise carbon-deprived systems. In the future, we expect a shift in the bacterial communities under homogeneous selection in glacier-fed streams as primary production becomes more important and streams become "greener".
Assuntos
Ecossistema , Microbiota , Filogenia , Biodiversidade , Bactérias/genética , BiofilmesRESUMO
Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e., limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk. We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, biosynthetic gene clusters (BGCs) involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, Superphylum Patescibacteria) encode both atimicrobial resistance genes (ARGs) and BGCs within close proximity of each other, demonstrating their capacity to simultaneously influence and compete within the microbial community. Our findings help unravel how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Additionally, we report that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. Importantly, these observations may be generalizable and potentially extended to other environments that may be more or less impacted by human activity. IMPORTANCE Antimicrobial resistance is an omnipresent phenomenon in the anthropogenically influenced ecosystems. However, its role in shaping microbial community dynamics in pristine environments is relatively unknown. Using metagenomics, we report the presence of antimicrobial resistance genes and their associated pathways in epilithic biofilms within glacier-fed streams. Importantly, we observe biosynthetic gene clusters associated with antimicrobial resistance in both pro- and eukaryotes in these biofilms. Understanding the role of resistance in the context of this pristine environment and complex biodiversity may shed light on previously uncharacterized mechanisms of cross-domain interactions.
Assuntos
Microbiota , Rios , Humanos , Rios/microbiologia , Camada de Gelo , Bactérias/genética , Família Multigênica , Biofilmes , Antibacterianos/farmacologiaRESUMO
Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage.
RESUMO
Microbial life in glacier-fed streams (GFSs) is dominated by benthic biofilms which fulfill critical ecosystem processes. However, it remains unclear how the bacterial communities of these biofilms assemble in stream ecosystems characterized by rapid turnover of benthic habitats and high suspended sediment loads. Using16S rRNA gene amplicon sequence data collected from 54 GFSs across the Himalayas, European Alps, and Scandinavian Mountains, we found that benthic biofilms harbor bacterial communities that are distinct from the bacterial assemblages suspended in the streamwater. Our data showed a decrease in species richness in the benthic biofilms compared to the bacterial cells putatively free-living in the water. The benthic biofilms also differed from the suspended water fractions in terms of community composition. Differential abundance analyses highlighted bacterial families that were specific to the benthic biofilms and the suspended assemblages. Notably, source-sink models suggested that the benthic biofilm communities are not simply a subset of the suspended assemblages. Rather, we found evidence that deterministic processes (e.g., species sorting) shape the benthic biofilm communities. This is unexpected given the high vertical mixing of water and contained bacterial cells in GFSs and further highlights the benthic biofilm mode of life as one that is determined through niche-related processes. Our findings therefore reveal a "native" benthic biofilm community in an ecosystem that is currently threatened by climate-induced glacier shrinkage. IMPORTANCE Benthic biofilms represent the dominant form of life in glacier-fed streams. However, it remains unclear how bacterial communities within these biofilms assemble. Our findings from glacier-fed streams from three major mountain ranges across the Himalayas, the European Alps and the Scandinavian Mountains reveal a bacterial community associated with benthic biofilms that is distinct from the assemblage in the overlying streamwater. Our analyses suggest that selection is the underlying process to this differentiation. This is unexpected given that bacterial cells that are freely living or attached to the abundant sediment particles suspended in the water continuously mix with the benthic biofilms. The latter colonize loose sediments that are subject to high turnover owing to the forces of the water flow. Our research unravels the existence of a microbiome specific to benthic biofilms in glacier-fed streams, now under major threats due to global warming.
Assuntos
Camada de Gelo , Microbiota , Bactérias/genética , Biodiversidade , Biofilmes , Ecossistema , Humanos , RNA Ribossômico 16S/genética , Rios/microbiologia , ÁguaRESUMO
The melting of the cryosphere is among the most conspicuous consequences of climate change, with impacts on microbial life and related biogeochemistry. However, we are missing a systematic understanding of microbiome structure and function across cryospheric ecosystems. Here, we present a global inventory of the microbiome from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under glacier influence. Combining phylogenetic and taxonomic approaches, we find that these cryospheric ecosystems, despite their particularities, share a microbiome with representatives across the bacterial tree of life and apparent signatures of early and constrained radiation. In addition, we use metagenomic analyses to define the genetic repertoire of cryospheric bacteria. Our work provides a reference resource for future studies on climate change microbiology.
Assuntos
Microbiota , Pergelissolo , Mudança Climática , Microbiota/genética , Filogenia , NeveRESUMO
In glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We observe a diverse microbiome spanning the entire tree of life including a rich virome. Various co-existing energy acquisition pathways point to diverse niches and the exploitation of available resources, likely fostering the establishment of complex biofilms during windows of opportunity. The wide occurrence of rhodopsins, besides chlorophyll, highlights the role of solar energy capture in these biofilms while internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against low temperatures and high UV-radiation are also revealed and the selective pressure of this environment is further highlighted by a phylogenomic analysis differentiating important components of the glacier-fed stream microbiome from other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits contributing to the success of complex biofilms to exploit environmental opportunities in glacier-fed streams, which are now rapidly changing owing to global warming.
Assuntos
Camada de Gelo , Microbiota , Biodiversidade , Biofilmes , Ecossistema , Microbiota/genética , Rios/microbiologiaRESUMO
The shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish.
Assuntos
Camada de Gelo , Microbiota , Bactérias/genética , Mudança Climática , Ecossistema , Camada de Gelo/microbiologia , Filogenia , ÁguaRESUMO
Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, "phyloscore analysis", to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.
Assuntos
Camada de Gelo , Microbiota , Biodiversidade , Clorofila A , Microbiota/genética , Filogenia , RiosRESUMO
In community ecology, drift refers to random births and deaths in a population. In microbial ecology, drift is estimated indirectly via community snapshots but in this way, it is almost impossible to distinguish the effect of drift from the effect of other ecological processes. Controlled experiments where drift is quantified in isolation from other processes are still missing. Here we isolate and quantify drift in a series of controlled experiments on simplified and tractable bacterial communities. We detect drift arising randomly in the populations within the communities and resulting in a 1.4-2% increase in their growth rate variability on average. We further use our experimental findings to simulate complex microbial communities under various conditions of selection and dispersal. We find that the importance of drift increases under high selection and low dispersal, where it can lead to ~5% of species loss and to ~15% increase in ß-diversity. The species extinct by drift are mainly rare, but they become increasingly less rare when selection increases, and dispersal decreases. Our results provide quantitative insights regarding the properties of drift in bacterial communities and suggest that it accounts for a consistent fraction of the observed stochasticity in natural surveys.
Assuntos
Bactérias , Microbiota , Bactérias/genéticaRESUMO
Glacier-fed streams (GFSs) exhibit near-freezing temperatures, variable flows, and often high turbidities. Currently, the rapid shrinkage of mountain glaciers is altering the delivery of meltwater, solutes, and particulate matter to GFSs, with unknown consequences for their ecology. Benthic biofilms dominate microbial life in GFSs, and play a major role in their biogeochemical cycling. Mineralization is likely an important process for microbes to meet elemental budgets in these systems due to commonly oligotrophic conditions, and extracellular enzymes retained within the biofilm enable the degradation of organic matter and acquisition of carbon (C), nitrogen (N), and phosphorus (P). The measurement and comparison of these extracellular enzyme activities (EEA) can in turn provide insight into microbial elemental acquisition effort relative to environmental availability. To better understand how benthic biofilm communities meet resource demands, and how this might shift as glaciers vanish under climate change, we investigated biofilm EEA in 20 GFSs varying in glacier influence from New Zealand's Southern Alps. Using turbidity and distance to the glacier snout normalized for glacier size as proxies for glacier influence, we found that bacterial abundance (BA), chlorophyll a (Chl a), extracellular polymeric substances (EPS), and total EEA per gram of sediment increased with decreasing glacier influence. Yet, when normalized by BA, EPS decreased with decreasing glacier influence, Chl a still increased, and there was no relationship with total EEA. Based on EEA ratios, we found that the majority of GFS microbial communities were N-limited, with a few streams of different underlying bedrock geology exhibiting P-limitation. Cell-specific C-acquiring EEA was positively related to the ratio of Chl a to BA, presumably reflecting the utilization of algal exudates. Meanwhile, cell-specific N-acquiring EEA were positively correlated with the concentration of dissolved inorganic nitrogen (DIN), and both N- and P-acquiring EEA increased with greater cell-specific EPS. Overall, our results reveal greater glacier influence to be negatively related to GFS biofilm biomass parameters, and generally associated with greater microbial N demand. These results help to illuminate the ecology of GFS biofilms, along with their biogeochemical response to a shifting habitat template with ongoing climate change.
RESUMO
Glacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments. Here, we benchmarked the utility and efficacy of four extraction protocols, including an up-scaled phenol-chloroform protocol. We found that established protocols for comparable sample types consistently failed to yield sufficient high-quality DNA, delineating the extreme character of GFS. The methods differed in the success of downstream applications such as library preparation and sequencing. An adapted phenol-chloroform-based extraction method resulted in higher yields and better recovered the expected taxonomic profile and abundance of reconstructed genomes when compared to commercially-available methods. Affordable and straight-forward, this method consistently recapitulated the abundance and genomes of a mock community, including eukaryotes. Moreover, by increasing the amount of input sediment, the protocol is readily adjustable to the microbial load of the processed samples without compromising protocol efficiency. Our study provides a first systematic and extensive analysis of the different options for extraction of nucleic acids from glacier-fed streams for high-throughput sequencing applications, which may be applied to other extreme environments.
RESUMO
Viruses interfere with their host's metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host's energy supply. AMGs involved in "non-traditional" energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a "pool" of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.
Assuntos
Ecossistema , Metagenômica , Água do Mar/virologia , Proteínas Virais/genética , Viroma , Vírus/genética , Bactérias/genética , RNA Ribossômico 16S/genéticaRESUMO
The effects of the abrupt input of high quantities of dissolved inorganic nitrogen and phosphorus on prokaryotic and eukaryotic microbial plankton were investigated in an attempt to simulate the nutrient disturbances caused by eutrophication and climate change. Two nutrient levels were created through the addition of different quantities of dissolved nutrients in a mesocosm experiment. During the developed blooms, compositional differences were found within bacteria and microbial eukaryotes, and communities progressed towards species of faster metabolisms. Regarding the different nutrient concentrations, different microbial species were associated with each nutrient treatment and community changes spanned from the phylum to the operational taxonomic unit (OTU) level. Network analyses revealed important differences in the biotic connections developed: more competitive relationships were established in the more intense nutrient disturbance and networks of contrasting complexity were formed around species of different ecological strategies. This work highlights that sudden disturbances in water column chemistry lead to the development of entirely different microbial food webs with distinct ecological characteristics.
Assuntos
Eucariotos , Microbiota , Código de Barras de DNA Taxonômico , Eutrofização , Nitrogênio , Nutrientes , FósforoRESUMO
While prokaryote community diversity and function have been extensively studied in soils and sediments, the functional role of fungi, despite their huge diversity, is widely unexplored. Several studies have, nonetheless, revealed the importance of fungi in provisioning services to prokaryote communities. Here, we hypothesise that the fungal community plays a key role in coordinating entire microbial communities by controlling the structure of functional networks in sediment. We selected a sediment environment with high niche diversity due to prevalent macrofaunal bioturbation, namely intertidal mangrove sediment, and explored the assembly of bacteria, archaea and fungi in different sediment niches, which we characterised by biogeochemical analysis, around the burrow of a herbivorous crab. We detected a high level of heterogeneity in sediment biogeochemical conditions, and diverse niches harboured distinct communities of bacteria, fungi and archaea. Saprotrophic fungi were a pivotal component of microbial networks throughout and we invariably found fungi to act as keystone species in all the examined niches and possibly acting synergistically with other environmental variables to determine the overall microbial community structure. In consideration of the importance of microbial-based nutrient cycling on overall sediment ecosystem functioning, we underline that the fungal microbiome and its role in the functional interactome cannot be overlooked.
Assuntos
Avicennia/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Rhizophoraceae/microbiologia , Archaea/classificação , Bactérias/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Fungos/genética , Sedimentos Geológicos/química , Lignina/metabolismo , Consórcios Microbianos/fisiologia , África do SulRESUMO
In the original version of this article, the green and blue outlines in Figure 2b, top centre and right panels were inadvertently shifted left from the correct position. This has now been corrected in the PDF and HTML versions of the article.
RESUMO
Selection and dispersal are ecological processes that have contrasting roles in the assembly of communities. Variable selection diversifies and strong dispersal homogenizes them. However, we do not know whether dispersal homogenizes communities directly via immigration or indirectly via weakening selection across habitats due to physical transfer of material, e.g., water mixing in aquatic ecosystems. Here we examine how dispersal homogenizes a simplified synthetic bacterial metacommunity, using a sequencing-independent approach based on flow cytometry and mathematical modeling. We show that dispersal homogenizes the metacommunity via immigration, not via weakening selection, and even when immigration is four times slower than growth. This finding challenges the current view that dispersal homogenizes communities only at high rates and explains why communities are homogeneous at small spatial scales. It also offers a benchmark for sequence-based studies in natural microbial communities where immigration rates can be inferred solely by using neutral models.
Assuntos
Bactérias/genética , Consórcios Microbianos/genética , Modelos Biológicos , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Clima Desértico , Ecossistema , Seleção Genética , Microbiologia do Solo , TemperaturaRESUMO
In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.