Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(3): ar25, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117591

RESUMO

Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.


Assuntos
Glicerofosfolipídeos , Indóis , Neoplasias , Compostos de Espiro , Humanos , Glicerofosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisossomos/metabolismo , Morte Celular , Neoplasias/metabolismo
2.
Front Cell Dev Biol ; 11: 1211498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348092

RESUMO

Lysosomes are crucial organelles essential for various cellular processes, and any damage to them can severely compromise cell viability. This study uncovers a previously unrecognized function of the calcium- and phospholipid-binding protein Annexin A7 in lysosome repair, which operates independently of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Our research reveals that Annexin A7 plays a role in repairing damaged lysosomes, different from its role in repairing the plasma membrane, where it facilitates repair through the recruitment of ESCRT-III components. Notably, our findings strongly suggest that Annexin A7, like the ESCRT machinery, is dispensable for membrane contact site formation within the newly discovered phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway. Instead, we speculate that Annexin A7 is recruited to damaged lysosomes and promotes repair through its membrane curvature and cross-linking capabilities. Our findings provide new insights into the diverse mechanisms underlying lysosomal membrane repair and highlight the multifunctional role of Annexin A7 in membrane repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA