Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 5(12): eaav9318, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31897423

RESUMO

Bio-based energy is key to developing a globally sustainable low-carbon economy. Lignocellulosic feedstock production on marginally productive croplands is expected to provide substantial climate mitigation benefits, but long-term field research comparing greenhouse gas (GHG) outcomes during the production of annual versus perennial crop-based feedstocks is lacking. Here, we show that long-term (16 years) switchgrass (Panicum virgatum L.) systems mitigate GHG emissions during the feedstock production phase compared to GHG-neutral continuous corn (Zea mays L.) under conservation management on marginally productive cropland. Increased soil organic carbon was the major GHG sink in all feedstock systems, but net agronomic GHG outcomes hinged on soil nitrous oxide emissions controlled by nitrogen (N) fertilizer rate. This long-term field study is the first to demonstrate that annual crop and perennial grass systems respectively maintain or mitigate atmospheric GHG contributions during the agronomic phase of bioenergy production, providing flexibility for land-use decisions on marginally productive croplands.

2.
J Environ Qual ; 47(3): 419-426, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864185

RESUMO

Grazing cattle redistribute nitrogen (N) consumed in forage through urine and feces patches. The high concentration of N in these patches often exceeds the uptake demands of the local plant community, thereby providing ideal conditions for losses of reactive N. However, knowledge on nitrous oxide (NO) and ammonia (NH) emissions from excretal patches on shortgrass steppe grassland is limited. We studied the effect of cattle urine (1002 kg N ha) and feces (1021 kg N ha) patches on NO and NH emissions in two sites with contrasting vegetation: (i) cool-season (C3) 'Bozoisky-Select' Russian wildrye [ (Fisch.) Nevski], pasture (C3Past) and (ii) C4-dominated native shortgrass steppe rangeland (C4SS). Nitrous oxide and NH were measured using semi-static and semi-open chambers, respectively. Cumulative NO emissions were 217 and 173% greater and cumulative volatile NH emissions were 339 and 157% greater on C3Past compared with C4SS from the urine and feces treatments, respectively. Nitrous oxide emission factors were 0.20 and 0.05% for urine and 0.07 and 0.03% for feces on C3Past and C4SS, respectively. Our findings suggest that using the IPCC Tier 1 default emission factor (2%, 95% CI = 0.7-6%) to estimate NO emissions from cattle excretal patches on shortgrass steppe grassland would result in a significant overestimation for these dryland systems. Ammonia emission factors were 35 and 10% for urine and 7 and 5% for feces on C3Past and C4SS, respectively. With the exception of the urine treatment on C3Past, observed NH emissions were consistent with the IPCC Tier 1 default assumption that 20% (95% CI = 5-50%) of excretal N is volatilized as NH+NO.


Assuntos
Amônia/análise , Fezes/química , Óxido Nitroso/análise , Urina/química , Animais , Bovinos , Pradaria , Nitrogênio
3.
Ecol Lett ; 21(5): 674-682, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508508

RESUMO

Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.


Assuntos
Dióxido de Carbono , Nitrogênio , Água , Biomassa , Pradaria , Poaceae , Solo
4.
J Environ Qual ; 45(5): 1788-1795, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695764

RESUMO

Few studies have quantified nitrous oxide (NO) emissions from intensively managed turfgrass systems on golf courses. Fertilizer treatments consisting of urea with inhibitors of nitrification and urease (INU), polymer-coated urea (PCU), and uncoated balanced methylene urea (BMU) chain, which use different mechanisms to control the release of N substrate, were applied to a golf course fairway and rough three times during the 2011 growing season at a rate of 50 kg N ha per application. The vented chamber method was used to measure turf-soil-atmospheric NO exchange. Cumulative emissions from fairway INU, PCU, and BMU treatments totaled 6.5, 1.9, and 7.6 kg NO-N ha yr, representing a 4.02, 1.25, and 4.75% loss of total N applied, respectively. Summer INU and BMU fertilization to the fairway produced the greatest NO fluxes. Rapid fluxes during the summer were likely related to low physiological activity in cool-season turfgrass and to warm, wet soil conditions that increased denitrification rates. However, PCU applied to the fairway was more resistant to NO losses than other fertilizer treatments. Fertilizer treatments applied to the rough had cumulative emissions of 2.4, 1.50, and 1.49 kg NO-N ha yr from INU, PCU, and BMU treatments, corresponding to a 1.21, 0.62, and 0.61% loss of total N applied, respectively. The lower NO emission on roughs was likely associated with greater carbon pools, lower soil moisture, and lower temperatures. This study supports the effectiveness of PCU to reduce NO emission from cool-season turfgrass fairways when soil conditions favored denitrification during warm periods. Applying INU and BMU when soil was cool and dry was effective in moderating NO losses.


Assuntos
Fertilizantes , Óxido Nitroso/análise , Golfe , Nitrogênio , Solo , Temperatura
5.
PLoS One ; 9(3): e89501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594783

RESUMO

Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.


Assuntos
Biocombustíveis , Produtos Agrícolas/crescimento & desenvolvimento , Gases/análise , Efeito Estufa , Produtos Agrícolas/efeitos dos fármacos , Nitrogênio/farmacologia , Panicum/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
6.
Glob Chang Biol ; 19(6): 1816-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505264

RESUMO

Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2 O fluxes in a well-drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2 O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2 O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell-shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2 O emission and uptake occurred at our site with some years showing cumulative N2 O emission and other years showing cumulative N2 O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2 O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2 O expressed in CO2 -equivalents.


Assuntos
Mudança Climática , Ecossistema , Metano/metabolismo , Óxidos de Nitrogênio/metabolismo , Poaceae
7.
New Phytol ; 196(3): 807-815, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23005343

RESUMO

Nitrogen (N) and phosphorus (P) are essential nutrients for primary producers and decomposers in terrestrial ecosystems. Although climate change affects terrestrial N cycling with important feedbacks to plant productivity and carbon sequestration, the impacts of climate change on the relative availability of N with respect to P remain highly uncertain. In a semiarid grassland in Wyoming, USA, we studied the effects of atmospheric CO(2) enrichment (to 600 ppmv) and warming (1.5/3.0°C above ambient temperature during the day/night) on plant, microbial and available soil pools of N and P. Elevated CO(2) increased P availability to plants and microbes relative to that of N, whereas warming reduced P availability relative to N. Across years and treatments, plant N : P ratios varied between 5 and 18 and were inversely related to soil moisture. Our results indicate that soil moisture is important in controlling P supply from inorganic sources, causing reduced P relative to N availability during dry periods. Both wetter soil conditions under elevated CO(2) and drier conditions with warming can further alter N : P. Although warming may alleviate N constraints under elevated CO(2) , warming and drought can exacerbate P constraints on plant growth and microbial activity in this semiarid grassland.


Assuntos
Mudança Climática , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/metabolismo , Microbiologia do Solo , Solo/análise , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Temperatura Alta , Compostos de Amônio Quaternário/metabolismo , Água/metabolismo , Wyoming
8.
New Phytol ; 187(2): 426-437, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487311

RESUMO

SUMMARY: *Simulation models indicate that the nitrogen (N) cycle plays a key role in how other ecosystem processes such as plant productivity and carbon (C) sequestration respond to elevated CO(2) and warming. However, combined effects of elevated CO(2) and warming on N cycling have rarely been tested in the field. *Here, we studied N cycling under ambient and elevated CO(2) concentrations (600 micromol mol(-1)), and ambient and elevated temperature (1.5 : 3.0 degrees C warmer day:night) in a full factorial semiarid grassland field experiment in Wyoming, USA. We measured soil inorganic N, plant and microbial N pool sizes and NO(3)(-) uptake (using a (15)N tracer). *Soil inorganic N significantly decreased under elevated CO(2), probably because of increased microbial N immobilization, while soil inorganic N and plant N pool sizes significantly increased with warming, probably because of increased N supply. We observed no CO(2 )x warming interaction effects on soil inorganic N, N pool sizes or NO(3)(-) uptake in plants and microbes. *Our results indicate a more closed N cycle under elevated CO(2) and a more open N cycle with warming, which could affect long-term N retention, plant productivity, and C sequestration in this semiarid grassland.


Assuntos
Dióxido de Carbono/farmacologia , Clima Desértico , Aquecimento Global , Nitrogênio/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biomassa , Marcação por Isótopo , Isótopos de Nitrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/análise , Temperatura , Água/metabolismo
9.
Environ Sci Technol ; 43(21): 8011-5, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924915

RESUMO

Sinking agricultural botanical and soil residues to the deep seafloor may not be a viable option for long-term carbon sequestration.


Assuntos
Produtos Agrícolas/química , Ecossistema
11.
Environ Pollut ; 116(3): 431-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11822722

RESUMO

Average annual net change in soil carbon stocks under past and current management is needed as part of national reporting of greenhouse gas emissions and to evaluate the potential for soils as sinks to mitigate increasing atmospheric CO2. We estimated net soil C stock changes for US agricultural soils during the period from 1982 to 1997 using the IPCC (Intergovernmental Panel on Climate Change) method for greenhouse gas inventories. Land use data from the NRI (National Resources Inventory; USDA-NRCS) were used as input along with ancillary data sets on climate, soils, and agricultural management. Our results show that, overall, changes in land use and agricultural management have resulted in a net gain of 21.2 MMT C year(-1) in US agricultural soils during this period. Cropped lands account for 15.1 MMT C year(-1), while grazing land soil C increased 6.1 MMT C year(-1). The land use and management changes that have contributed the most to increasing soil C during this period are (1) adoption of conservation tillage practices on cropland, (2) enrollment of cropland in the Conservation Reserve Program, and (3) cropping intensification that has resulted in reduced use of bare fallow.


Assuntos
Agricultura , Carbono/análise , Monitoramento Ambiental , Solo , Carbono/metabolismo , Clima , Conservação dos Recursos Naturais , Efeito Estufa , Política Pública , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA