Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579162

RESUMO

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Atmos Meas Tech ; 13(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32670429

RESUMO

NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ, conducted in 2011-2014) campaign in the United States and the joint NASA and National Institute of Environmental Research (NIER) Korea-United States Air Quality Study (KORUS-AQ, conducted in 2016) in South Korea were two field study programs that provided comprehensive, integrated datasets of airborne and surface observations of atmospheric constituents, including nitrogen dioxide (NO2), with the goal of improving the interpretation of spaceborne remote sensing data. Various types of NO2 measurements were made, including in situ concentrations and column amounts of NO2 using ground- and aircraft-based instruments, while NO2 column amounts were being derived from the Ozone Monitoring Instrument (OMI) on the Aura satellite. This study takes advantage of these unique datasets by first evaluating in situ data taken from two different instruments on the same aircraft platform, comparing coincidently sampled profile-integrated columns from aircraft spirals with remotely sensed column observations from ground-based Pandora spectrometers, intercomparing column observations from the ground (Pandora), aircraft (in situ vertical spirals), and space (OMI), and evaluating NO2 simulations from coarse Global Modeling Initiative (GMI) and high-resolution regional models. We then use these data to interpret observed discrepancies due to differences in sampling and deficiencies in the data reduction process. Finally, we assess satellite retrieval sensitivity to observed and modeled a priori NO2 profiles. Contemporaneous measurements from two aircraft instruments that likely sample similar air masses generally agree very well but are also found to differ in integrated columns by up to 31.9 %. These show even larger differences with Pandora, reaching up to 53.9 %, potentially due to a combination of strong gradients in NO2 fields that could be missed by aircraft spirals and errors in the Pandora retrievals. OMI NO2 values are about a factor of 2 lower in these highly polluted environments due in part to inaccurate retrieval assumptions (e.g., a priori profiles) but mostly to OMI's large footprint (> 312 km2).

3.
J Air Waste Manag Assoc ; 70(2): 193-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769734

RESUMO

Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10- 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5- 10 ozone exceedance days throughout the Washington, DC - Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160-800 mortalities (95% confidence interval (CI): 70-1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3-$6.6 billion (CI: $174 million-$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90-2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180-580) less hospital admissions for pneumonia, 570 (CI: 0-1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960-1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: -280,350-963,190) less symptoms of asthma exacerbation during July 2011.Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Serviço Hospitalar de Emergência/estatística & dados numéricos , Calor Extremo , Hospitalização/estatística & dados numéricos , Ozônio/análise , Doenças Respiratórias/epidemiologia , Baltimore , Humanos , Ohio , Doenças Respiratórias/prevenção & controle , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA