Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005418

RESUMO

The phosphate-starvation response transcription-factor protein family is essential to plant response to low-levels of phosphate. Proteins in this transcription factor (TF) family act by altering various gene expression levels, such as increasing levels of the acid phosphatase proteins which catalyze the conversion of inorganic phosphates to bio-available compounds. There are few structural characterizations of proteins in this TF family, none of which address the potent TF activation domains. The phosphate-starvation response-like protein-4 (PHL4) protein from this family has garnered interest due to the unusually high TF activation activity of the N-terminal domain. Here, we demonstrate using solution nuclear magnetic resonance (NMR) measurements that the PHL4 N-terminal activating TF effector domain is mainly an intrinsically disordered domain of over 200 residues, and that the C-terminal region of PHL4 is also disordered. Additionally, we present evidence from size-exclusion chromatography, diffusion NMR measurements, and a cross-linking assay suggesting full-length PHL4 forms a tetrameric assembly. Together, the data indicate the N- and C-terminal disordered domains in PHL4 flank a central folded region that likely forms the ordered oligomer of PHL4. This work provides a foundation for future studies detailing how the conformations and molecular motions of PHL4 change as it acts as a potent activator of gene expression in phosphate metabolism. Such a detailed mechanistic understanding of TF function will benefit genetic engineering efforts that take advantage of this activity to boost transcriptional activation of genes across different organisms.

2.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853912

RESUMO

The Tropomyosin 1 isoform I/C C-terminal domain (Tm1-LC) fibril structure is studied jointly with cryogenic electron microscopy (cryo-EM) and solid state nuclear magnetic resonance (NMR). This study demonstrates the complementary nature of these two structural biology techniques. Chemical shift assignments from solid state NMR are used to determine the secondary structure at the level of individual amino acids, which is faithfully seen in cryo-EM reconstructions. Additionally, solid state NMR demonstrates that the region not observed in the reconstructed cryo-EM density is primarily in a highly mobile random coil conformation rather than adopting multiple rigid conformations. Overall, this study illustrates the benefit of investigations combining cryo-EM and solid state NMR to investigate protein fibril structure.

3.
J Am Chem Soc ; 143(17): 6657-6668, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896178

RESUMO

The biomolecular condensation of proteins with low complexity sequences plays a functional role in RNA metabolism and a pathogenic role in neurodegenerative diseases. The formation of dynamic liquid droplets brings biomolecules together to achieve complex cellular functions. The rigidification of liquid droplets into ß-strand-rich hydrogel structures composed of protein fibrils is thought to be purely pathological in nature. However, low complexity sequences often harbor multiple fibril-prone regions with delicately balanced functional and pathological interactions. Here, we investigate the maturation of liquid droplets formed by the low complexity domain of the TAR DNA-binding protein 43 (TDP-43). Solid state nuclear magnetic resonance measurements on the aged liquid droplets identify residues 365-400 as the structured core, which are squarely outside the region between residues 311-360 thought to be most important for pathological fibril formation and aggregation. The results of this study suggest that multiple segments of this low complexity domain are prone to form fibrils and that stabilization of ß-strand-rich structure in one segment precludes the other region from adopting a rigid fibril structure.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrogéis , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em Folha beta , Desnaturação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA