Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathology ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38777739

RESUMO

Haemophilus influenzae, a causative agent of severe invasive infections such as meningitis, sepsis and pneumonia, is classified into encapsulated or typeable (represented by serotypes A to F) and non-typeable varieties (NTHi) by the presence or absence of the polysaccharide capsule. Invasive disease caused by H. influenzae type B (HIB) can be prevented through vaccination which remains the main disease control intervention in many countries. This study examined the genomic diversity of circulating H. influenzae strains associated with invasive disease in New South Wales, Australia, before and during the COVID-19 pandemic. Ninety-six isolates representing 95 cases of invasive H. influenzae infections (iHi) diagnosed between January 2017 and September 2022 were typed and characterised using whole genome sequencing. These cases were caused by serotypes A (n=24), B (n=35), E (n=3), F (n=2) and NTHi (n=32). There was an apparent decline in the number of iHi infections during the COVID-19 pandemic, with a corresponding increase in the proportion of iHi cases caused by serotype A (HIA), which returned to pre-pandemic levels in 2022. Fifteen isolates associated with HIB or non-typeable iHi were resistant to ß-lactams due to a PBP3 mutation or carriage of blaTEM-1. Further, capsular gene duplication was observed in HIB isolates but was not found in HIA. These findings provide important baseline genomic data for ongoing iHi surveillance and control.

2.
Microbiol Spectr ; 11(6): e0220223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966271

RESUMO

IMPORTANCE: This study provides a laboratory framework to ensure ongoing relevance and performance of amplification-based whole genome sequencing to strengthen public health surveillance during extended outbreaks or pandemics. The framework integrates regular reviews of the performance of a genomic surveillance system and highlights the importance of ongoing monitoring and the identification and implementation of improvements to whole genome sequencing methods to enhance public health responses to pathogen outbreaks.


Assuntos
Genômica , Saúde Pública , Surtos de Doenças , Sequenciamento Completo do Genoma/métodos , Vigilância em Saúde Pública
3.
BMC Infect Dis ; 23(1): 303, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158832

RESUMO

The emergence of resistance to antiviral drugs increasingly used to treat SARS-CoV-2 infections has been recognised as a significant threat to COVID-19 control. In addition, some SARS-CoV-2 variants of concern appear to be intrinsically resistant to several classes of these antiviral agents. Therefore, there is a critical need for rapid recognition of clinically relevant polymorphisms in SARS-CoV-2 genomes associated with significant reduction of drug activity in virus neutralisation experiments. Here we present SABRes, a bioinformatic tool, which leverages on expanding public datasets of SARS-CoV-2 genomes and allows detection of drug resistance mutations in consensus genomes as well as in viral subpopulations. We have applied SABRes to detect resistance-conferring mutations in 25,197 genomes generated over the course of the SARS-CoV-2 pandemic in Australia and identified 299 genomes containing resistance conferring mutations to the five antiviral therapeutics that retain effectiveness against currently circulating strains of SARS-CoV-2 - Sotrovimab, Bebtelovimab, Remdesivir, Nirmatrelvir and Molnupiravir. These genomes accounted for a 1.18% prevalence of resistant isolates discovered by SABRes, including 80 genomes with resistance conferring mutations found in viral subpopulations. Timely recognition of these mutations within subpopulations is critical as these mutations can provide an advantage under selective pressure and presents an important step forward in our ability to monitor SARS-CoV-2 drug resistance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutação , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Pathology ; 55(1): 117-122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36109195

RESUMO

Bordetella hinzii has emerged as an unusual cause of infection in immunocompromised patients, previously linked to zoonotic transmission. Antimicrobial susceptibility and genetic diversity of B. hinzii are poorly understood. This study reports phenotypic and genomic characteristics of the first four Australian isolates of B. hinzii obtained from elderly immunocompromised patients. Bordetella hinzii isolates were identified by MALDI-TOF and whole genome sequencing (WGS). Antibiotic susceptibility testing was performed using disk diffusion or E-test. Genomes of B. hinzii were analysed in global context. A phylogenetic tree was constructed of all isolates using Roary and a maximum-likelihood tree was generated from the core-snp alignment. Bordetella hinzii minimum inhibitory concentrations (MICs) were largely uniform with high MICs to ampicillin, ceftriaxone and ciprofloxacin and low MICs to meropenem and piperacillin-tazobactam. Genomic analysis of isolate sequences divided strains analysed into two phylogenetically distinct groups, with one Australian B. hinzii isolate (AUS-4) assigned to Group 1, and the remaining isolates (AUS1-AUS3 and AUS-5) to Group 2. Single nucleotide polymorphism (SNP) analysis revealed two isolates, AUS-1 and AUS-2, were closely related with 14 SNP differences between them. All other Australian isolates were unrelated to each and all other isolates from the international dataset. Bordetella hinzii appears to pose a risk to immunocompromised individuals but remains susceptible to extended spectrum ß-lactam and carbapenem antibiotics. Genomic analysis suggested a dissemination of genetically distinct strains.


Assuntos
Bordetella , Infecções Respiratórias , Humanos , Idoso , Filogenia , Austrália , Bordetella/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
5.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146829

RESUMO

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired over 30 mutations in the spike protein (with 15 in the receptor-binding domain), raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three, and six months post-two doses of Pfizer-BioNTech BNT162b2 had a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres were boosted. Despite this increase, neutralising antibody titres were reduced fourfold for Omicron compared to lineage A.2.2 SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética
6.
J Antimicrob Chemother ; 77(11): 3016-3025, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35971665

RESUMO

BACKGROUND: The emergence of macrolide resistance in Bordetella pertussis, the causative agent of pertussis, due to mutations in the 23S rRNA gene has been recently recognized. However, resistance mechanisms to macrolides in Bordetella parapertussis and Bordetella holmesii remain unknown. OBJECTIVES: This study investigated genomic changes induced by in vitro exposure to erythromycin in these three main pathogens responsible for pertussis-like disease. METHODS: A set of 10 clinical and reference strains of B. pertussis, B. parapertussis and B. holmesii was exposed to erythromycin for 15 weeks or 30 subculture passages. Antibiotic pressure was achieved by growth on the selective media with erythromycin Etest strips or impregnated discs. Genome polymorphisms and transcriptomic profiles were examined by short- and long-read sequencing of passaged isolates. RESULTS: B. parapertussis and B. holmesii isolates developed significant in vitro resistance to erythromycin (MIC >256 mg/L) within 2 to 7 weeks and at 5 to 12 weeks, respectively. B. pertussis remained phenotypically susceptible to the antibiotic following 15 weeks of exposure, with the MIC between 0.032 to 0.38 mg/L. Genomic analysis revealed that B. holmesii developed resistance due to mutations in the 23S rRNA gene. The resistance mechanism in B. parapertussis was hypothesized as being due to upregulation of an efflux pump mechanism. CONCLUSIONS: These findings indicate that both B. holmesii and B. parapertussis can be more prone to induced resistance following exposure to treatment with erythromycin than B. pertussis. The surveillance of macrolide resistance in Bordetella isolates recovered from patients with pertussis, especially persistent disease, is warranted.


Assuntos
Coqueluche , Humanos , Coqueluche/epidemiologia , Eritromicina/farmacologia , Antibacterianos/farmacologia , Transcriptoma , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Bordetella pertussis/genética , RNA Ribossômico 23S/genética , Genômica
7.
Front Microbiol ; 13: 824217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663867

RESUMO

Background: Low frequency intrahost single nucleotide variants (iSNVs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been increasingly recognised as predictive indicators of positive selection. Particularly as growing numbers of SARS-CoV-2 variants of interest (VOI) and concern (VOC) emerge. However, the dynamics of subgenomic RNA (sgRNA) expression and its impact on genomic diversity and infection outcome remain poorly understood. This study aims to investigate and quantify iSNVs and sgRNA expression in single and longitudinally sampled cohorts over the course of mild and severe SARS-CoV-2 infection, benchmarked against an in vitro infection model. Methods: Two clinical cohorts of SARS-CoV-2 positive cases in New South Wales, Australia collected between March 2020 and August 2021 were sequenced. Longitudinal samples from cases hospitalised due to SARS-CoV-2 infection (severe) (n = 16) were analysed and compared with cases that presented with SARS-CoV-2 symptoms but were not hospitalised (mild) (n = 23). SARS-CoV-2 genomic diversity profiles were also examined from daily sampling of culture experiments for three SARS-CoV-2 variants (Lineage A, B.1.351, and B.1.617.2) cultured in VeroE6 C1008 cells (n = 33). Results: Intrahost single nucleotide variants were detected in 83% (19/23) of the mild cohort cases and 100% (16/16) of the severe cohort cases. SNP profiles remained relatively fixed over time, with an average of 1.66 SNPs gained or lost, and an average of 4.2 and 5.9 low frequency variants per patient were detected in severe and mild infection, respectively. sgRNA was detected in 100% (25/25) of the mild genomes and 92% (24/26) of the severe genomes. Total sgRNA expressed across all genes in the mild cohort was significantly higher than that of the severe cohort. Significantly higher expression levels were detected in the spike and the nucleocapsid genes. There was significantly less sgRNA detected in the culture dilutions than the clinical cohorts. Discussion and Conclusion: The positions and frequencies of iSNVs in the severe and mild infection cohorts were dynamic overtime, highlighting the importance of continual monitoring, particularly during community outbreaks where multiple SARS-CoV-2 variants may co-circulate. sgRNA levels can vary across patients and the overall level of sgRNA reads compared to genomic RNA can be less than 1%. The relative contribution of sgRNA to the severity of illness warrants further investigation given the level of variation between genomes. Further monitoring of sgRNAs will improve the understanding of SARS-CoV-2 evolution and the effectiveness of therapeutic and public health containment measures during the pandemic.

8.
Nat Commun ; 13(1): 2745, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585202

RESUMO

Co-infections with different variants of SARS-CoV-2 are a key precursor to recombination events that are likely to drive SARS-CoV-2 evolution. Rapid identification of such co-infections is required to determine their frequency in the community, particularly in populations at-risk of severe COVID-19, which have already been identified as incubators for punctuated evolutionary events. However, limited data and tools are currently available to detect and characterise the SARS-CoV-2 co-infections associated with recognised variants of concern. Here we describe co-infection with the SARS-CoV-2 variants of concern Omicron and Delta in two epidemiologically unrelated adult patients with chronic kidney disease requiring maintenance haemodialysis. Both variants were co-circulating in the community at the time of detection. Genomic surveillance based on amplicon- and probe-based sequencing using short- and long-read technologies identified and quantified subpopulations of Delta and Omicron viruses in respiratory samples. These findings highlight the importance of integrated genomic surveillance in vulnerable populations and provide diagnostic pathways to recognise SARS-CoV-2 co-infection using genomic data.


Assuntos
COVID-19 , Coinfecção , Genômica , Humanos , SARS-CoV-2/genética
10.
Microb Genom ; 6(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32108565

RESUMO

Bordetella pertussis, the aetiological agent of whooping cough, is re-emerging globally despite widespread vaccination. B. pertussis is highly infectious and, prior to vaccination programmes, was the leading cause of infant mortality. The WHO estimated that over 600 000 deaths are prevented annually by pertussis vaccination, but B. pertussis infection was still responsible for over 63 000 deaths globally in 2013. The re-emergence of B. pertussis has been linked to strains with inactive or absent major virulence factors included in vaccines such as pertactin, pertussis toxin and filamentous haemagglutinin. Thus, the molecular surveillance of currently circulating strains is critical in understanding and controlling B. pertussis. Such information provides data on strains to inform control measures and the identification of future vaccine antigens. Current surveillance and typing methods for B. pertussis rely on the availability of clinical isolates. However, since the 1990s, the majority of pertussis cases have been diagnosed by PCR, where an isolate is not needed. The rapid decline in the availability of B. pertussis isolates impacts our ability to monitor this infection. The growing uptake of next-generation sequencing (NGS) has offered the opportunity for culture-independent genome sequencing and typing of this fastidious pathogen. Therefore, the objective of the study was to optimize respiratory sample preparation, independent of culture, in order to type B. pertussis using NGS. The study compared commercial depletion kits and specimen-processing methods using selective lysis detergents. The goal was to deplete human DNA, the major obstacle for sequencing a pathogen directly from a clinical sample. Samples spiked with a clinically relevant amount of B. pertussis were used to provide comparison between the different methods. Commercial depletion kits including the MolYsis, Qiagen Microbiome and NEBNext Kits were tested. Previously published methods, for Saponin and TritonX-100, were also trialled as a depletion. The ratio of B. pertussis to human DNA was determined by real-time PCR for ERV3 and IS481 (as markers of human and B. pertussis DNA, respectively), then samples were sequenced using the Illumina NextSeq 500 platform. The number of human and B. pertussis sequenced reads were then compared between treatments. The results showed that commercial kits reduced the human DNA present, but also reduced the concentration of target B. pertussis. However, selective lysis with Saponin treatment resulted in almost undetectable levels of human DNA, with minimal loss of target B. pertussis DNA. Sequencing read depth improved five-fold in reads to B. pertussis. Our investigation delivered a potential protocol that will enable the public health laboratory surveillance of B. pertussis in the era of culture-independent testing.


Assuntos
Técnicas Bacteriológicas , Bordetella pertussis/genética , Nasofaringe/microbiologia , Coqueluche/microbiologia , DNA/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Saponinas/química
12.
Pathology ; 50(3): 322-326, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29455870

RESUMO

Bordetella pertussis, the aetiological agent of whooping cough is routinely diagnosed by polymerase chain reaction (PCR) directed at IS481, an insertion sequence target also found in Bordetella holmesii. Recent reports have suggested that B. holmesii infections can be misdiagnosed as pertussis, which can have a significant impact on public health surveillance. This study investigated the presence of B. holmesii in B. pertussis positive clinical samples, in order to determine the incidence of B. holmesii. Clinical cases of pertussis diagnosed by IS481-specific PCR between October 2008 and March 2016 in New South Wales were included. Bordetella holmesii was detected through the simultaneous amplification of IS481 and B. holmesii specific insertions sequence, hIS1001. A total of 46 of 802 patients were identified to be positive for B. holmesii rather than B. pertussis, suggesting an incidence rate of 6.5% in 2009, 16.8% in 2010, 7.6% during 2013 and 8.1% during 2015. Bordetella holmesii infections were diagnosed during and between pertussis epidemics, however cases of B. holmesii and B. pertussis co-infections were not found. The predominant age group of B. holmesii infection was 11-18 years old, which was significantly different to the mean age of B. pertussis infections (0-6 years, p = 0.023). These findings revealed that B. holmesii was co-circulating alongside the B. pertussis epidemic for seven years, hidden from view, as B. holmesii infections have been diagnosed as B. pertussis. Confirmatory testing of B. pertussis positive samples for the presence of B. holmesii, especially during pertussis epidemics, should improve the quality of laboratory diagnosis and laboratory surveillance for pertussis. The presence of B. holmesii in Australia highlights the importance of testing for this pathogen and ongoing molecular surveillance that can guide the control of whooping cough.


Assuntos
Infecções por Bordetella/diagnóstico , Infecções por Bordetella/epidemiologia , Infecções por Bordetella/microbiologia , Bordetella/genética , Bordetella/isolamento & purificação , Bordetella pertussis , DNA Bacteriano/análise , Humanos , Incidência , New South Wales/epidemiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA