Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Life Sci Alliance ; 5(12)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220570

RESUMO

Adaptation to breathing is a critical step in lung function and it is crucial for organismal survival. Alveoli are the lung gas exchange units and their development, from late embryonic to early postnatal stages, requires feedbacks between multiple cell types. However, how the crosstalk between the alveolar cell types is modulated to anticipate lung adaptation to breathing is still unclear. Here, we uncovered a synchronous alternative splicing switch in multiple genes in the developing mouse lungs at the transition to birth, and we identified hnRNP A1, Cpeb4, and Elavl2/HuB as putative splicing regulators of this transition. Notably, we found that <i>Vegfa</i> switches from the <i>Vegfa</i> 164 isoform to the longer <i>Vegfa</i> 188 isoform exclusively in lung alveolar epithelial AT1 cells. Functional analysis revealed that VEGFA 188 (and not VEGFA 164) drives the specification of Car4-positive aerocytes, a subtype of alveolar endothelial cells specialized in gas exchanges. Our results reveal that the cell type-specific regulation of <i>Vegfa</i> alternative splicing just before birth modulates the epithelial-endothelial crosstalk in the developing alveoli to promote lung adaptation to breathing.


Assuntos
Processamento Alternativo , Células Endoteliais , Processamento Alternativo/genética , Animais , Células Endoteliais/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Pulmão/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220082

RESUMO

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Assuntos
Polaridade Celular , Células Endoteliais , Junções Aderentes/metabolismo , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Endoteliais/metabolismo , Camundongos , Morfogênese , Retina/metabolismo
3.
Vasc Biol ; 2(1): H29-H43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32935077

RESUMO

The vascular system is a hierarchically organized network of blood vessels that play crucial roles in embryogenesis, homeostasis and disease. Blood vessels are built by endothelial cells - the cells lining the interior of blood vessels - through a process named vascular morphogenesis. Endothelial cells react to different biomechanical signals in their environment by adjusting their behavior to: (1) invade, proliferate and fuse to form new vessels (angiogenesis); (2) remodel, regress and establish a hierarchy in the network (patterning); and (3) maintain network stability (quiescence). Each step involves the coordination of endothelial cell differentiation, proliferation, polarity, migration, rearrangements and shape changes to ensure network integrity and an efficient barrier between blood and tissues. In this review, we highlighted the relevance and the mechanisms involving endothelial cell migration during different steps of vascular morphogenesis. We further present evidence on how impaired endothelial cell dynamics can contribute to pathology.

4.
Elife ; 82019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246175

RESUMO

Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.


Assuntos
Movimento Celular , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Camundongos , Ligação Proteica , Vinculina/metabolismo , alfa Catenina/metabolismo
5.
Elife ; 5: e07727, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26845523

RESUMO

Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.


Assuntos
Células Endoteliais/fisiologia , Estresse Mecânico , Remodelação Vascular , Via de Sinalização Wnt , Animais , Linhagem Celular , Movimento Celular , Polaridade Celular , Regulação da Expressão Gênica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA