Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(6): 2146-2153, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816687

RESUMO

Lepidopteran pests have been successfully managed by the adoption of insect resistant transgenic plants expressing Cry and/or Vip insecticidal proteins derived from Bacillus thuringiensis (Bt plants). Among such pests, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is highlighted for its destructive potential in maize crops and for cases of field-evolved resistance to Bt plants. Cry insecticidal proteins expressed in Bt plants are known for their interaction with insect midgut receptors and subsequent midgut cell disruption that leads to target pest death. In the midgut of lepidopteran larval pests such as S. frugiperda, serine proteases are important in dietary protein digestion and activation or degradation of insecticidal proteins. This work was conducted to evaluate if the use of a soybean trypsin inhibitor (SBTI) could disrupt the development of a Bt-susceptible and a Bt-resistant population of S. frugiperda ingesting Bt (expressing Cry1F, Cry1A.105, and Cry2Ab2 Cry proteins) and non-Bt maize plants. The SBTI was produced and purified using recombinant expression in E. coli followed by purification in Ni-Sepharose. Bioassays using non-Bt maize leaves indicated that the development of susceptible and resistant populations of S. frugiperda was not influenced by the ingestion of SBTI. However, when the resistant population consumed Bt maize plants amended with SBTI, high mortality along with a reduction in larval weight and reduced activity of digestive trypsins were observed. Although the mode of action was not elucidated, it is possible that the consumption of SBTI increased susceptibility to Bt maize in the resistant population of S. frugiperda.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Spodoptera , Zea mays , Inibidores da Tripsina/farmacologia , Glycine max/genética , Endotoxinas/farmacologia , Escherichia coli/metabolismo , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Larva/fisiologia , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA