Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
3.
Commun Med (Lond) ; 3(1): 177, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082066

RESUMO

BACKGROUND: Pregnant women and their fetuses are particularly susceptible to respiratory pathogens. How they respond to SARS-CoV-2 infection is still under investigation. METHODS: We studied the transcriptome and phenotype of umbilical cord blood cells in pregnant women infected or not with SARS-CoV-2. RESULTS: Here we show that symptomatic maternal COVID-19 is associated with a transcriptional erythroid cell signature as compared with asymptomatic and uninfected mothers. We observe an expansion of fetal hematopoietic multipotent progenitors skewed towards erythroid differentiation that display increased clonogenicity. There was no difference in inflammatory cytokines levels in the cord blood upon maternal SARS-CoV-2 infection. Interestingly, we show an activation of hypoxia pathway in cord blood cells from symptomatic COVID-19 mothers, suggesting that maternal hypoxia may be triggering this fetal stress hematopoiesis. CONCLUSIONS: Overall, these results show a fetal hematopoietic response to symptomatic COVID-19 in pregnant mothers in the absence of vertically transmitted SARS-CoV-2 infection which is likely to be a mechanism of fetal adaptation to the maternal infection and reduced oxygen supply.


During pregnancy, women are more prone to respiratory infectious diseases. It is not known if COVID-19 infection has an adverse effect on the growing fetus. Here, we aimed to identify any potential effects of COVID-19 infection on the fetus by taking measurements from the umbilical cord blood cells. In mothers who displayed symptomatic COVID-19 infection, we observed an increased production of hematopoietic progenitor cells, especially the ones that are responsible for producing red blood cells. We think this might be a coping mechanism for the fetus, as the mother's body deals with the infection. Therefore, our work shows that growing fetuses do respond to maternal COVID-19 symptoms, even when they are protected in the womb from the infection and may never get infected by the mother.

4.
Sci Total Environ ; 900: 166406, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37597540

RESUMO

Environmental light is perceived and anticipated by organisms to synchronize their biological cycles. Therefore, artificial light at night (ALAN) disrupts both diurnal and seasonal biological rhythms. Reproduction is a complex physiological process involving integration of environmental signals by the brain, and release of endocrine signals by the pituitary that regulate gametogenesis and spawning. In addition, males from many species form a dominance hierarchy that, through a combination of aggressive and protective behavior, influences their reproductive success. In this study, we investigated the effect of ALAN and continuous daylight on the behavior and fitness of male fish within a dominance hierarchy using a model fish, the Japanese medaka. In normal light/dark cycles, male medaka establish a hierarchy with the dominant males being more aggressive and remaining closer to the female thus limiting the access of subordinate males to females during spawning. However, determination of the paternity of the progeny revealed that even though subordinate males spend less time with the females, they are, in normal light conditions, equally successful at producing progeny due to an efficient sneaking behavior. Continuous daylight completely inhibited the establishment of male hierarchy, whereas ALAN did not affect it. Nonetheless, when exposed to ALAN, subordinate males fertilize far fewer eggs. Furthermore, we found that when exposed to ALAN, subordinate males produced lower quality sperm than dominant males. Surprisingly, we found no differences in circulating sex steroid levels, pituitary gonadotropin levels, or gonadosomatic index between dominant and subordinate males, neither in control nor ALAN condition. This study is the first to report an effect of ALAN on sperm quality leading to a modification of male fertilization success in any vertebrate. While this work was performed in a model fish species, our results suggest that in urban areas ALAN may impact the genetic diversity of species displaying dominance behavior.


Assuntos
Poluição Luminosa , Oryzias , Masculino , Feminino , Animais , Sêmen , Reprodução , Agressão
5.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36791137

RESUMO

The 2 pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regulate the reproductive function in all vertebrates. While many studies have investigated the regulation of gonadotropin production and release by sex steroid feedback, its role on the regulation of gonadotrope cell number remains unclear. Using medaka as a model and an optimized protocol to restore physiological sex steroids levels following gonadectomy, we show that gonadal sex steroids not only decrease fshb transcript levels, but also Fsh cell number in both sexes. We then investigated the origin of Fsh cell hyperplasia induced by gonadectomy. In both sexes, bromodeoxyuridine incubation shows that this is achieved via Fsh cell mitosis. In situ hybridization reveals that new Fsh cells also originate from transdifferentiating Tsh cells in females, but not in males. Both phenomena are inhibited by sex steroid supplementation via feeding. In males (but not females), gonadectomy (without recovery with sex steroid supplementation) also reduces sox2 transcript levels and Sox2-immunopositive population size, suggesting that Sox2 progenitors may be recruited to produce new Fsh cells. Opposite to Fsh cells, gonadectomy decreases lhb levels in both sexes, and levels are not restored by sex steroid supplementation. In addition, the regulation of Lh cell number also seems to be sex dependent. Removal of gonadal sex steroids stimulates Lh cell mitosis in male (like Fsh cells) but not in females. To conclude, our study provides the first evidence on sexually dimorphic mechanisms used in the fish pituitary to remodel gonadotrope populations in response to sex steroids.


Assuntos
Gonadotrofos , Oryzias , Feminino , Animais , Masculino , Transdiferenciação Celular , Hiperplasia , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/genética , Hipófise , Hormônios Esteroides Gonadais/farmacologia , Esteroides , Mitose
6.
Sci Data ; 10(1): 62, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720883

RESUMO

Directing both organismal homeostasis and physiological adaptation, the pituitary is a key endocrine gland in all vertebrates. One of its major tasks is to coordinate sexual maturation through the production and release of hormones stimulating gonad development. In order to study its developmental dynamics in the model fish medaka (Oryzias latipes), we sampled both the pituitary and the ovaries of 68 female fish. Of these, 55 spanned the entire course of sexual maturation from prepubertal juveniles to spawning adults. An additional 13 showed either considerably faster or slower growth and development than the majority of fish. We used histological examination of the ovaries to determine a histological maturation stage, and analyzed the pituitary glands using RNA-seq optimized for low input. Taken together, these data reveal the timing of hormone production priorities, and form a comprehensive resource for the study of their regulation.


Assuntos
Oryzias , RNA-Seq , Animais , Feminino , Oryzias/genética , Hipófise , Maturidade Sexual , Fatores de Tempo
7.
Gen Comp Endocrinol ; 330: 114144, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270338

RESUMO

In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope clusters have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these satellite clusters are not known. We recently discovered two distinct prolactin-expressing cell types in Japanese medaka (Oryzias latipes), a euryhaline species, using single cell transcriptomics. In the present study, we characterize these two transcriptomically distinct lactotrope cell types and explore the hypothesis that they represent spatially distinct cell clusters, as found in other species. Single cell RNA sequencing shows that one of the two lactotrope cell types exhibits an expression profile similar to that of stem cell-like folliculo-stellate cell populations. Using in situ hybridization, we show that the medaka pituitary often develops additional small satellite lactotrope cell clusters, like in other teleost species. These satellite clusters arise early during development and grow in cell number throughout life regardless of the animal's sex. Surprisingly, our data do not show a correspondence between the stem cell-like lactotropes and these satellite lactotrope clusters. Instead, our data support a scenario in which the stem cell-like lactotropes are an intrinsic stage in the development of every spatially distinct lactotrope cluster. In addition, lactotrope activity in both spatially distinct lactotrope clusters decreases when environmental salinity increases, supporting their role in osmoregulation. However, this decrease appears weaker in the satellite lactotrope cell clusters, suggesting that these lactotropes are regulated differently.


Assuntos
Oryzias , Adeno-Hipófise , Animais , Prolactina/metabolismo , Oryzias/genética , Oryzias/metabolismo , Adeno-Hipófise/metabolismo , Hipófise/metabolismo , Hibridização In Situ
8.
Neurobiol Dis ; 174: 105892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36240949

RESUMO

Preventing brain cell loss and enhancing tissue repair are crucial objectives to improve the outcome of stroke. Fetal microchimerism has been implicated in brain repair following ischemic stroke in mice. CCL2/CCR2 signaling pathway triggers fetal progenitors trafficking to cutaneous wounds. Therefore, we sought to evaluate whether CCL2 could dampen brain damage in a model of excitotoxic lesion in post-partum mice. Virgin or post-partum mice were subjected to an intracerebral injection of ibotenate to induce excitotoxic lesions. Low doses of CCL2 or its vehicle were concomitantly injected. Morphological and molecular analyses were performed 1 and 5 days following the procedure. Intracerebral treatment with low doses of CCL2 was able to limit brain excitotoxic damage induced by ibotenate in post-partum mice, through an enhanced recruitment of fetal microchimeric cells to the damaged hemisphere. At day 1 post-injection, we observed a decreased cortical apoptosis associated with a reduced reactive astrocytosis. At day 5, we found an increased proportion of mature neurons and oligodendrocytes correlating with an increase in GAP43 growth cones. At this stage, immune microglial cells were reduced, while angiogenesis was enhanced. Importantly, CCL2 did not have beneficial effects in virgin mice therefore ruling out a specific role of CCL2 independently from fetal microchimeric cells mobilization. CCL2 treatment efficiently enhances fetal cell mobilization to improve the outcome of a brain excitotoxic challenge in post-partum mice. This study paves the way for a "natural stem cell therapy" based on the selective recruitment of fetal progenitors to repair maternal brain injury.


Assuntos
Lesões Encefálicas , Humanos , Feminino , Animais , Camundongos , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Período Pós-Parto , Quimiocina CCL2/metabolismo , Quimiocina CCL2/farmacologia
9.
J Vis Exp ; (188)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36282704

RESUMO

Japanese medaka (Oryzias latipes) is a teleost fish and an emerging vertebrate model for ecotoxicology, developmental, genetics, and physiology research. Medaka is also used extensively to investigate vertebrate reproduction, which is an essential biological function as it allows a species to perpetuate. Sperm quality is an important indicator of male fertility and, thus, reproduction success. Techniques for extracting sperm and sperm analysis are well documented for many species, including teleost fish. Collecting sperm is relatively simple in larger fish but can be more complicated in small model fish as they produce less sperm and are more delicate. This article, therefore, describes two methods of sperm collection in the small model fish, Japanese medaka: testes dissection and abdominal massage. This paper demonstrates that both approaches are feasible for medaka and shows that abdominal massage can be performed a repeated number of times as the fish quickly recover from the procedure. This article also describes a protocol for computer-assisted sperm analysis in medaka to objectively assess several important indicators of medaka sperm quality (motility, progressivity, duration of motility, relative concentration). These procedures, specified for this useful small teleost model, will greatly enhance understanding of the environmental, physiological, and genetic factors influencing fertility in vertebrate males.


Assuntos
Oryzias , Animais , Masculino , Sêmen , Análise do Sêmen , Espermatozoides , Computadores
10.
Front Neuroendocrinol ; 67: 101018, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870647

RESUMO

The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.


Assuntos
Peixes , Mamíferos , Animais , Peixes/genética , Peixes/metabolismo , Hipófise/metabolismo , Hormônios/metabolismo
11.
Aging (Albany NY) ; 14(9): 3728-3756, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507806

RESUMO

Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.


Assuntos
Ratos-Toupeira , Transcriptoma , Envelhecimento/genética , Animais , Longevidade/genética , Camundongos , Ratos-Toupeira/genética , Células-Tronco
12.
Sci Data ; 8(1): 279, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711832

RESUMO

The pituitary is the vertebrate endocrine gland responsible for the production and secretion of several essential peptide hormones. These, in turn, control many aspects of an animal's physiology and development, including growth, reproduction, homeostasis, metabolism, and stress responses. In teleost fish, each hormone is presumably produced by a specific cell type. However, key details on the regulation of, and communication between these cell types remain to be resolved. We have therefore used single-cell sequencing to generate gene expression profiles for 2592 and 3804 individual cells from the pituitaries of female and male adult medaka (Oryzias latipes), respectively. Based on expression profile clustering, we define 15 and 16 distinct cell types in the female and male pituitary, respectively, of which ten are involved in the production of a single peptide hormone. Collectively, our data provide a high-quality reference for studies on pituitary biology and the regulation of hormone production, both in fish and in vertebrates in general.


Assuntos
Hormônios/biossíntese , Oryzias , Hipófise/citologia , RNA-Seq , Análise de Célula Única , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Oryzias/fisiologia , Transcriptoma
13.
Front Endocrinol (Lausanne) ; 12: 719843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497587

RESUMO

In vertebrates, the anterior pituitary plays a crucial role in regulating several essential physiological processes via the secretion of at least seven peptide hormones by different endocrine cell types. Comparative and comprehensive knowledge of the spatial distribution of those endocrine cell types is required to better understand their physiological functions. Using medaka as a model and several combinations of multi-color fluorescence in situ hybridization, we present the first 3D atlas revealing the gland-wide distribution of seven endocrine cell populations: lactotropes, thyrotropes, Lh and Fsh gonadotropes, somatotropes, and pomca-expressing cells (corticotropes and melanotropes) in the anterior pituitary of a teleost fish. By combining in situ hybridization and immunofluorescence techniques, we deciphered the location of corticotropes and melanotropes within the pomca-expressing cell population. The 3D localization approach reveals sexual dimorphism of tshba-, pomca-, and lhb-expressing cells in the adult medaka pituitary. Finally, we show the existence of bi-hormonal cells co-expressing lhb-fshb, fshb-tshba and lhb-sl using single-cell transcriptomics analysis and in situ hybridization. This study offers a solid basis for future comparative studies of the teleost pituitary and its functional plasticity.


Assuntos
Atlas como Assunto , Oryzias/anatomia & histologia , Hipófise/anatomia & histologia , Anatomia Artística , Animais , Feminino , Imageamento Tridimensional , Masculino , Caracteres Sexuais
15.
PLoS One ; 16(1): e0245462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507913

RESUMO

Accumulating evidence indicates that some pituitary cell types are organized in complex networks in both mammals and fish. In this study, we have further investigated the previously described cellular extensions formed by the medaka (Oryzias latipes) luteinizing hormone gonadotropes (Lh cells). Extensions, several cell diameters long, with varicosity-like swellings, were common both in vitro and in vivo. Some extensions approached other Lh cells, while others were in close contact with blood vessels in vivo. Gnrh further stimulated extension development in vitro. Two types of extensions with different characteristics could be distinguished, and were classified as major or minor according to size, origin and cytoskeleton protein dependance. The varicosity-like swellings appeared on the major extensions and were dependent on both microtubules and actin filaments. Immunofluorescence revealed that Lhß protein was mainly located in these swellings and at the extremity of the extensions. We then investigated whether these extensions contribute to network formation and clustering, by following their development in primary cultures. During the first two days in culture, the Lh cells grew long extensions that with time physically attached to other cells. Successively, tight cell clusters formed as cell somas that were connected via extensions migrated towards each other, while shortening their extensions. Laser photolysis of caged Ca2+ showed that Ca2+ signals originating in the soma propagated from the soma along the major extensions, being particularly visible in each swelling. Moreover, the Ca2+ signal could be transferred between densely clustered cells (sharing soma-soma border), but was not transferred via extensions to the connected cell. In summary, Lh gonadotropes in medaka display a complex cellular structure of hormone-containing extensions that are sensitive to Gnrh, and may be used for clustering and possibly hormone release, but do not seem to contribute to communication between cells themselves.


Assuntos
Gonadotrofos/citologia , Oryzias , Animais , Sinalização do Cálcio , Células Cultivadas , Citoesqueleto/metabolismo
16.
Front Endocrinol (Lausanne) ; 11: 605068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365013

RESUMO

The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.


Assuntos
Plasticidade Celular , Hormônios Esteroides Gonadais/farmacologia , Gonadotrofos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Animais , Peixes
17.
J Vis Exp ; (166)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33369605

RESUMO

Sex steroids, produced by the gonads, play an essential role in brain and pituitary tissue plasticity and in the neuroendocrine control of reproduction in all vertebrates by providing feedback to the brain and pituitary. Teleost fishes possess a higher degree of tissue plasticity and variation in reproductive strategies compared to mammals and appear to be useful models to investigate the role of sex steroids and the mechanisms by which they act. The removal of the main source of sex steroid production using gonadectomy together with blood sampling to measure steroid levels has been well-established and fairly feasible in bigger fish and is a powerful technique to investigate the role and effects of sex steroids. However, these techniques raise challenges when implemented in small size teleost models. Here, we describe the step-by-step procedures of gonadectomy in both males and female Japanese medaka followed by blood sampling. These protocols are shown to be highly feasible in medaka indicated by a high survival rate, safety for the life span and phenotype of the fish, and reproducibility in terms of sex steroid clearance. The use of these procedures combined with the other advantages of using this small teleost model will greatly improve the understanding of feedback mechanisms in the neuroendocrine control of reproduction and tissue plasticity provided by sex steroids in vertebrates.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Tamanho Corporal , Castração , Oryzias/anatomia & histologia , Oryzias/sangue , Animais , Castração/instrumentação , Estradiol/sangue , Feminino , Gônadas/cirurgia , Masculino , Modelos Animais , Oviposição , Reprodutibilidade dos Testes , Suturas , Testosterona/análogos & derivados , Testosterona/sangue
18.
J Endocrinol ; 245(1): 21-37, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977313

RESUMO

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhß, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Oryzias/metabolismo , Maturidade Sexual/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Hormônio Foliculoestimulante/genética , Expressão Gênica , Gonadotrofos/citologia , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/genética , Masculino , Oryzias/genética , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/genética
19.
Gen Comp Endocrinol ; 285: 113293, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580881

RESUMO

Gonadotropin-releasing hormone (Gnrh) plays a major role in the regulation of physiological and behavioural processes related to reproduction. In the pituitary, it stimulates gonadotropin synthesis and release via activation of Gnrh receptors (Gnrhr), belonging to the G protein-coupled receptor superfamily. Evidence suggests that differential regulation of the two gonadotropins (Fsh and Lh) is achieved through activation of distinct intracellular pathways and, probably, through the action of distinct receptors. However, the roles of the different Gnrhr isoforms in teleosts are still not well understood. This study investigates the gene expression of Gnrhr in the pituitary gland of precociously maturing Atlantic salmon (Salmo salar) male parr. A total of six Gnrhr paralogs were identified in the Atlantic salmon genome and named according to phylogenetic relationship; gnrhr1caα, gnrhr1caß, gnrhr1cbα, gnrhr1cbß, gnrhr2bbα, gnrhr2bbß. All paralogs, except gnrhr1caα, were expressed in male parr pituitary during gonadal maturation as evidenced by qPCR analysis. Only one gene, gnrhr2bbα, was differentially expressed depending on maturational stage (yearly cycle), with high expression levels in maturing fish, increasing in parallel with gonadotropin subunit gene expression. Additionally, a correlation in daily expression levels was detected between gnrhr2bbα and lhb (daily cycle) in immature fish in mid-April. Double fluorescence in situ hybridization showed that gnrhr2bbα was expressed exclusively in lhb gonadotropes in the pituitary, with no expression detected in fshb cells. These results suggest the involvement of receptor paralog gnrhr2bbα in the regulation of lhb cells, and not fshb cells, in sexually maturing Atlantic salmon male parr.


Assuntos
Hormônio Luteinizante/metabolismo , Receptores LHRH/metabolismo , Salmo salar/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas/metabolismo , Masculino , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores LHRH/genética , Salmo salar/genética , Maturidade Sexual/genética , Testículo/metabolismo , Distribuição Tecidual
20.
Gen Comp Endocrinol ; 287: 113344, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794734

RESUMO

Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.


Assuntos
Peixes , Gonadotrofos/metabolismo , Mamíferos , Hipófise/metabolismo , Animais , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA