Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rep ; 75(4): 951-961, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171518

RESUMO

BACKGROUND: Bacterial resistance is defined as a microorganism's capacity to develop mechanisms for resisting a determined antimicrobial. Gram-positive bacteria, such as Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), are internationally recognized among the isolates with this resistance profile. In this context, the demand for new medicines has risen, and silver nanoparticles (AgNPs) have been highlighted, especially for their anti-bacterial effects. To develop a nano-antibiotic for treating these Gram-positive strains, we herein report synthesizing and characterizing a nano-antibiotic based on AgNPs functionalized with the complex vancomycin-cysteamine. METHODS: AgNPs were produced using the bottom-up methodology and functionalized with vancomycin modified by the carbodiimide chemistry, forming Ag@vancomycin. Susceptibility tests were performed using S. aureus and E. faecalis strains to assess the bacteriostatic and bactericidal potential of the developed nano-antibiotic. RESULTS: Fourier transform infrared spectroscopy measurements showed the efficacy of vancomycin chemical modification, and the characteristic bands of AgNPs functionalization with the antibiotic. The increase in the nano-antibiotic average hydrodynamic diameter observed by dynamic light scattering proved the presence of vancomycin at the surface of AgNPs. The data from the minimum inhibitory concentration and minimal bactericidal concentration assays tested on standard and clinical planktonic strains of S. aureus and E. faecalis presented excellent performance. CONCLUSION: The results indicate the promising development of a new nano-antibiotic in which the functionalization potentiates the bacteriostatic action of AgNPs and vancomycin with greater efficacy against Gram-positive strains.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Vancomicina/farmacologia , Vancomicina/química , Staphylococcus aureus , Enterococcus faecalis , Prata/farmacologia , Cisteamina/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978403

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacterium that has drawn attention due to its resistance to carbapenem antibiotics. The treatment of patients with severe infections has been challenging. Thus, silver nanoparticles (AgNPs) have been applied for their antimicrobial effects. This work aims to analyze the synergistic effect of the carbapenem antibiotic Imipenem with AgNPs against different susceptibility clinical profiles of K. pneumoniae. The silver nanoparticles were synthesized by bottom-up methodology and capped with alpha-lipoic acid. Susceptibility tests were performed using four K. pneumoniae strains with different susceptibility profiles to Imipenem. The strains were induced to form a biofilm for 48 h. Crystal violet and Resazurin assays were performed to determine biofilm formation and minimal inhibitory concentration, respectively. The reduction in Imipenem concentration with the association of nanoparticles was found in all strains studied in planktonic form, and the synergism between silver nanoparticles and Imipenem was demonstrated through the analysis of the fractional inhibitory concentration index. The viability percentage was reduced at rates ≥80% in the biofilm analysis, characterized by the minimal biofilm inhibitory concentration. The study's proposed association resulted in inhibitory effects on different K. pneumoniae profiles, both in planktonic forms and biofilm, with peculiar behavior in the Imipenem-resistant profile.

3.
Am J Infect Control ; 51(8): 871-878, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36581226

RESUMO

BACKGROUND: Multidrug-resistant bacteria are one of the world's biggest health problems; therefore, improving the spectrum of action of antibiotics could be necessary to reverse this situation. Amikacin and silver salts have well-known antimicrobial properties. However, both drugs lost their effectiveness against some bacteria, such as Acinetobacter baumannii. This work aims to develop a nanodrug from silver nanoparticles (AgNPs) functionalized with Amikacin against multidrug-resistant Acinetobacter baumannii. METHODS: AgNPs were produced using the bottom-up methodology and functionalized with Amikacin modified by the carbodiimide-based chemistry, forming AgNPs@Amikacin. Susceptibility tests were performed using Amikacin-resistant Acinetobacter baumannii strains to assess the bacteriostatic and bactericidal potential of the developed nanodrug. The clinical strains were induced to form a biofilm, and biomass quantification and the metabolic activity were determined. RESULTS: The AgNPs have a hydrodynamic diameter of the particles with a bimodal distribution, with a size of 37.84 nm. The FT-IR spectrum of AgNPs@Amikacin exhibits vibrational modes corresponding to Amikacin, confirming the conjugation to AgNPs. Susceptibility testing demonstrated a minimal inhibitory and bactericidal concentration of < 0.5 µg/mL. The AgNPs@Amikacin reduced the biofilm metabolic activity of Acinetobacter baumannii at rates ≥ 50%, characterized by the minimal biofilm inhibition concentrations. CONCLUSIONS: Results demonstrate a promising development of a new nanodrug with lower concentrations, less toxicity, and greater efficacy against multidrug-resistant Acinetobacter baumannii.


Assuntos
Acinetobacter baumannii , Nanopartículas Metálicas , Humanos , Amicacina/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA