Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17213, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821522

RESUMO

Longitudinal data sets for population abundance are essential for studies of imperiled organisms with long life spans or migratory movements, such as marine turtles. Population status trends are crucial for conservation managers to assess recovery effectiveness. A direct assessment of population growth is the enumeration of nesting numbers and quantifying nesting attempts (successful nests/unsuccessful attempts) and emergence success (number of hatchlings leaving the nest) because of the substantial annual variations due to nest placement, predation, and storm activity. We documented over 133,000 sea turtle crawls for 50.9 km of Florida Gulf of Mexico coastline from 1982 to 2021 for a large loggerhead turtle nesting aggregation and a recovering remnant population of green sea turtles. Over time both species have emerged to nest significantly earlier in the year and green sea turtle nesting seasons have extended. Nest counts and hatchling production for both species have significantly increased, but the rate of emergence success of hatchlings leaving nests has not changed for loggerheads and has declined for green sea turtles. Sea level rise and coastal developments undoubtedly influence coastal habitats in the long-term, impacting nest site selection and potential recruitment from the loss of emerged hatchlings. However, the present indications for steady Gulf of Mexico recovery of loggerhead and green sea turtles counter findings of the Florida Atlantic coasts. This study indicates that effective conservation practices can be detected within time scales of 1-2 turtle generations.


Assuntos
Tartarugas , Animais , Golfo do México , Crescimento Demográfico , Florida , Comportamento de Nidação
2.
Dis Aquat Organ ; 132(2): 109-124, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30628577

RESUMO

Data on Karenia brevis red tides (≥105 cells l-1) and on dead or debilitated (i.e. stranded) Kemp's ridleys Lepidochelys kempii, loggerheads Caretta caretta, green turtles Chelonia mydas, hawksbills Eretmochelys imbricata, and leatherbacks Dermochelys coriacea documented in Florida during 1986-2013 were evaluated to assess red tides as a sea turtle mortality factor. Unusually large numbers of stranded sea turtles were found coincident with red tides primarily along Florida's Gulf coast but also along a portion of Florida's Atlantic coast. These strandings were mainly adult and large immature loggerheads and Kemp's ridleys, and small immature green turtles and hawksbills. Unusually large numbers of stranded leatherbacks never coincided with red tide. For the 3 most common species, results of stranding data modeling, and of investigations that included determining brevetoxin concentrations in samples collected from stranded turtles, all indicated that red tides were associated with greater and more frequent increases in the numbers of stranded loggerheads and Kemp's ridleys than in the number of stranded green turtles. The mean annual number of stranded sea turtles attributed to K. brevis red tide was 80 (SE = 21.6, range = 2-338). Considering typical stranding probabilities, the overall mortality was probably 5-10 times greater. Red tide accounted for a substantial portion of all stranded loggerheads (7.1%) and Kemp's ridleys (17.7%), and a smaller portion of all stranded green turtles (1.6%). Even though K. brevis red tides occur naturally, the mortality they cause needs to be considered when managing these threatened and endangered species.


Assuntos
Dinoflagellida , Tartarugas , Animais , Florida , Proliferação Nociva de Algas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA